Is there an interference maximum, a minimum, an intermediate state closer to a maximum, or an intermediate state closer to a minimum at point P in Fig. 35-10 if the path length difference of the two rays is (a) 2.2λ, (b) 3.5λ, (c) 1.8λ, and (d) 1.0λ? For each situation, give the value of m associated with the maximum or minimum involved. Figure 35-10 ( a ) Waves from slits, S 1 and S 2 (which extend into and out of the page) combine at P , an arbitrary point on screen C at distance y from the central axis. The angel θ serves as a convenient locator for P . ( b ) For D > d , we can approximate rays r 1 and r 2 as begin parallel, at angel θ to the central axis
Is there an interference maximum, a minimum, an intermediate state closer to a maximum, or an intermediate state closer to a minimum at point P in Fig. 35-10 if the path length difference of the two rays is (a) 2.2λ, (b) 3.5λ, (c) 1.8λ, and (d) 1.0λ? For each situation, give the value of m associated with the maximum or minimum involved. Figure 35-10 ( a ) Waves from slits, S 1 and S 2 (which extend into and out of the page) combine at P , an arbitrary point on screen C at distance y from the central axis. The angel θ serves as a convenient locator for P . ( b ) For D > d , we can approximate rays r 1 and r 2 as begin parallel, at angel θ to the central axis
Is there an interference maximum, a minimum, an intermediate state closer to a maximum, or an intermediate state closer to a minimum at point P in Fig. 35-10 if the path length difference of the two rays is (a) 2.2λ, (b) 3.5λ, (c) 1.8λ, and (d) 1.0λ? For each situation, give the value of m associated with the maximum or minimum involved.
Figure 35-10 (a) Waves from slits, S1 and S2 (which extend into and out of the page) combine at P, an arbitrary point on screen C at distance y from the central axis. The angel θ serves as a convenient locator for P. (b) For D > d, we can approximate rays r1 and r2 as begin parallel, at angel θ to the central axis
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.