
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.5, Problem 13E
Given
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3. What is the function of LM565 pin 6?
4. What is the purpose of the multistage low-pass filter between the LM565
output and the comparator input?
C10.1μ
FSK
Input
w₁
R2
100k
-o+5V(Vcc)
VR1
10k
C4
C5:
0.1 μ.
0.1μ
0.1 μ
8
10
R3
R4
D₁
FSK
Phase
Rx 7
10K
10K
Detector
www
ww
ww
1N4004
+
Demodulated
Output
6
AMP
R₁
6
100k
3
C₂
0.05 μ
VCO
4
5
9
U1
-5V
LM565
-0-5V(VEE)
Fig. 14-2 FSK demodulator
U2
R6
μ4741
10k
1. What components determine the free-running frequency of the VCO in
LM565 of Fig. 14-2?
2. What is the purpose of μA741 in Fig. 14-2?
C10.1μ
FSK
Input
-o+5V(Vcc)
VR1
10k
C4
C5:
0.1 μ.
0.1 μ
0.1 μ
8
10
R3
R4
R5
Phase
Rx 7
10K
10K
10k
D₁
FSK
Detector
www
ww
ww
ww
1N4004
+
Demodulated
Output
AMP
6
R₁
6
100k
w₁
R2
100k
3
C₂
0.05 μ
VCO
4
5
9
U1
-5V
LM565
-0-5V(VEE)
Fig. 14-2 FSK demodulator
U2
R6
μ4741
10k
When troubleshooting power and control circuits, approximate meter readings should be anticipated if the meter readings are going to be used to help determine circuit problems. Determine the expected DMM reading if the ciircuit is working properly. The expected reading of DMM 1 with the motor on is what VAC? And the expected reading of DMM 2 with the motor is on is what VAC? And The expected reading of DMM 3 with the motor on is What mA?
Chapter 3 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 3.1 - When are two vectors equal and when are they...Ch. 3.1 - Prob. 2CQCh. 3.1 - If AB = 0, what is AB?Ch. 3.1 - If AB = 0, what is AB?Ch. 3.1 - Is A(BC) a vector triple product?Ch. 3.1 - If AB = AC, does it follow that B = C?Ch. 3.1 - Find the distance vector between P1 = (1, 2, 3)...Ch. 3.1 - Find the angle AB between vectors A and B of...Ch. 3.1 - Prob. 3ECh. 3.1 - Vectors A and B lie in the y-z plane and both have...
Ch. 3.1 - If AB=AC, does it follow that B = C?Ch. 3.2 - A circular cylinder of radius r = 5 cm is...Ch. 3.3 - Why do we use more than one coordinate system?Ch. 3.3 - Prob. 8CQCh. 3.3 - Prob. 9CQCh. 3.3 - How is the position vector of a point in...Ch. 3.3 - Prob. 7ECh. 3.3 - Prob. 8ECh. 3.4 - Prob. 9ECh. 3.4 - Find the directional derivative of V=rz2cos2 along...Ch. 3.4 - Prob. 11ECh. 3.4 - Prob. 12ECh. 3.5 - Given A=e2y(xsin2x+ycos2x), find A.Ch. 3.5 - Given A=rrcos+rsin+z3z , find A at (2,0, 3).Ch. 3.5 - If E=RAR in spherical coordinates, calculate the...Ch. 3.5 - Verify the divergence theorem by calculating the...Ch. 3.5 - Prob. 17ECh. 3.6 - Find A at (2, 0, 3) in cylindrical coordinates for...Ch. 3.6 - Find A at (3, /6, 0) in spherical coordinates for...Ch. 3.7 - What do the magnitude and direction of the...Ch. 3.7 - Prob. 12CQCh. 3.7 - Prob. 13CQCh. 3.7 - Prob. 14CQCh. 3.7 - What is the meaning of the transformation provided...Ch. 3.7 - Prob. 16CQCh. 3.7 - Prob. 17CQCh. 3.7 - When is a vector field conservative?Ch. 3 - Prob. 1PCh. 3 - Given vectors A=x2y3+z, B=x2y+z3, and C=x4+y2+z2,...Ch. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Given vectors A=x+y2z3, B=x2y4, and C=y2z4, find...Ch. 3 - Given vectors A=x2y+z3 and B=x3z2, find a vector C...Ch. 3 - Given A=x(x+2y)y(y+3z)+z(3xy), determine a unit...Ch. 3 - By expansion in Cartesian coordinates, prove: (a)...Ch. 3 - Find an expression for the unit vector directed...Ch. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - A given line is described by x+2y=4. Vector A...Ch. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Given B=x(z3y)+y(2x3z)z(x+y), find a unit vector...Ch. 3 - Find a vector G whose magnitude is 4 and whose...Ch. 3 - A given line is described by the equation: y=x1....Ch. 3 - Vector field E is given by E=R5Rcos12Rsincos+3sin....Ch. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Use the appropriate expression for the...Ch. 3 - Prob. 26PCh. 3 - A section of a sphere is described by 0 R 2, 0 ...Ch. 3 - A vector field is given in cylindrical coordinates...Ch. 3 - At a given point in space, vectors A and B are...Ch. 3 - Given vectors...Ch. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Transform the vector A=Rsin2cos+cos2sin into...Ch. 3 - Transform the following vectors into cylindrical...Ch. 3 - Transform the following vectors into spherical...Ch. 3 - Find the gradient of the following scalar...Ch. 3 - For each of the following scalar fields, obtain an...Ch. 3 - The gradient of a scalar function T is given by...Ch. 3 - Prob. 39PCh. 3 - For the scalar function V = xy2 z2, determine its...Ch. 3 - Evaluate the line integral of E=xxyy along the...Ch. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Each of the following vector fields is displayed...Ch. 3 - Prob. 45PCh. 3 - For the vector field E=xxzyyz2zxy, verify the...Ch. 3 - For the vector field E=r10erz3z, verify the...Ch. 3 - A vector field D=rr3 exists in the region between...Ch. 3 - For the vector field D=R3R2, evaluate both sides...Ch. 3 - For the vector field E=xxyy(x2+2y2), calculate (a)...Ch. 3 - Repeat Problem 3.50 for the contour shown in Fig....Ch. 3 - Verify Stokess theorem for the vector field...Ch. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Verify Stokess theorem for the vector field B = (r...Ch. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Find the Laplacian of the following scalar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- DU 1. Describe the operations of Q1, Q2 and LM566. 2. Describe the functions of VR1 and VR2. R6 lk R3 BRUD 3. If the input frequency is higher than the FSK frequency, does the FSK modulator operate normally? 0+12V R10 5.6k 6 10k VRI 500k U₁ LM566 3 VCO output 7 Digital input R₁ VR2 10k ww 1k Qi C945 C945 C5 I 0.1 uF C6 luF C₁ 0.01μ R2 10k ww R$ 100k C3 +12V 0.01μ R9 100k +12V 6 R710k Rs 100k 6 R4 100k P FSK output ww ww + www + 3 3 4 U U₂ 1000p -12V HA741 1000p-12V µА741 Fig. 13-2 FSK modulator CTS circuit.arrow_forward. 30-dB, right-circularly polarized antenna in a radio link radiates 5-W of power t 2 GHz. The input impedance of this antenna is 75 ohms, and it is attached ɔ a 50-ohm transmission line. The receiving antenna has an impedance mismatch at its terminals, - which leads to a VSWR of 2. The receiving antenna is about 95% efficient and has a field pattern near the beam maximum given by E, = (2âx + jây) F, (0, 0). The distance between the two antennas is 4,000 km, and the receiving antenna Directivity is 100. Determine the Minimum power Delivered to receiving antenna. 1arrow_forwardOpen plc - ladder logic To control traffic, we have red lights to stop cars and green lights to initiate entry/exit. If a car is in the lane, then the red lights turn ON. If no cars are in the lane, then the green lights turn ON. Upon turning ON the main switch button, the main switch indicator should turn ON and the system should start with green lights ON and red lights OFF?arrow_forward
- 3-4) 3.4-2 Signals g₁(t) = 104П(104) and g2(t) = 8(t) are applied at the inputs of the ideal low-pass filters H₁(f)=(f/20,000) and H2(f) = П(f/10,000) (Fig. P3.4-2). The outputs y₁ (t) and y2(t) of these filters are multiplied to obtain the signal y(t) = y1 (1)y2(t). (a) Sketch G1(f) and G2(f). (b) Sketch H₁(f) and H₂(f). (c) Sketch Y₁ (f) and Y2(f). (d) Find the bandwidths of y₁ (t), y2(t), and y(t). 8₁ (1) H₁(f) y, (t) y(t) = y₁ (1) y2 (1) 82(1) ½⁄2 (1) H₂(f)arrow_forwardsolve the differential equation y'' -2y'-3y=x³e^5x cos(3x) Don't use AI,I need it handwrittenarrow_forward3-3) Similar to Lathi & Ding prob. 3.3-7. The signals in the figure below are modulated signals with carrier cos(5t). Find the Fourier transforms of these signals using the appropriate properties of the Fourier transform and text Table 3.1. The sketch the magnitude and phase spectra for figure parts (a) and (b). Hint: these functions can be expressed in the form g(t) cos(2лfot) (a) 1 1 2π www. σπ (b) (c) όπarrow_forward
- 3-1) Similar to Lathi & Ding prob. 3.1-1. Use direct integration to find the Fourier transforms of the signals shown below. a) g₁(t) = II(t − 2) + 2 exp (−3|t|) b) g(t) = d(t+2)+3e¯u (t − 2)arrow_forward3-2) Lathi & Ding prob. 3.1-5. From the definition in eq. 3.1b, find the inverse Fourier transforms of the spectra in the figure below. G(f) COS лf 10 (a) G(f) 1 -B B (b)arrow_forwardFundamentals of Energy Systems HW 4 Q2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Current Divider Rule; Author: Neso Academy;https://www.youtube.com/watch?v=hRU1mKWUehY;License: Standard YouTube License, CC-BY