Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.4, Problem 8E
Interpretation Introduction

Interpretation:

For the given function x˙= rx - x1+x2 the value of r at which bifurcation occur is to be determined. The bifurcation is to be classified as saddle-node, trans-critical, supercritical pitchfork, or subcritical pitchfork. The bifurcation diagram of fixed points x*vs. r is to be sketched.

Concept Introduction:

Bifurcation theory is used to study the stability of dynamical systems.

The phenomenon in which fixed points are created and destroyed by varying the control parameter is termed as saddle-node bifurcation.

The transcritical bifurcation occurs when the fixed points exchange their stabilities as the parameter is changed.

Fixed points are the points where, x˙ = 0.

A pitchfork bifurcation occurs where the system transitions from one fixed point to three fixed points.

A subcritical pitchfork bifurcation occurs when there is a single unstable fixed point present, which after the change of parameters becomes unstable, and two new symmetric unstable fixed points appear are stable.

A supercritical pitchfork bifurcation occurs when there is a single stable fixed point present, which after the change of parameters becomes unstable, and two new symmetric fixed points appear are stable.

Blurred answer
Students have asked these similar questions
4. Consider Chebychev's equation (1 - x²)y" - xy + λy = 0 with boundary conditions y(-1) = 0 and y(1) = 0, where X is a constant. (a) Show that Chebychev's equation can be expressed in Sturm-Liouville form d · (py') + qy + Ary = 0, dx y(1) = 0, y(-1) = 0, where p(x) = (1 = x²) 1/2, q(x) = 0 and r(x) = (1 − x²)-1/2 (b) Show that the eigenfunctions of the Sturm-Liouville equation are extremals of the functional A[y], where A[y] = I[y] J[y]' and I[y] and [y] are defined by - I [y] = √, (my² — qy²) dx and J[y] = [[", ry² dx. Explain briefly how to use this to obtain estimates of the smallest eigenvalue >1. 1 (c) Let k > be a parameter. Explain why the functions y(x) = (1-x²) are suitable 4 trial functions for estimating the smallest eigenvalue. Show that the value of A[y] for these trial functions is 4k2 A[y] = = 4k - 1' and use this to estimate the smallest eigenvalue \1. Hint: L₁ x²(1 − ²)³¹ dr = 1 (1 - x²)³ dx (ẞ > 0). 2ẞ
You recieve a case of fresh Michigan cherries that weighs 8.2 kg. You will be making cherry pies. Each pie will require 1 3/4 pounds of pitted cherries. How many pies can be made from the case if the yield percent for cherries is 87
Q/ show that the system: x = Y + x(x² + y²) y° = =x+y (x² + y²) 9 X=-x(x²+ y²) 9 X Y° = x - y (x² + y²) have the same lin car part at (0,0) but they are topologically different. Give the reason.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Points, Lines, Planes, Segments, & Rays - Collinear vs Coplanar Points - Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=dDWjhRfBsKM;License: Standard YouTube License, CC-BY
Naming Points, Lines, and Planes; Author: Florida PASS Program;https://www.youtube.com/watch?v=F-LxiLSSaLg;License: Standard YouTube License, CC-BY