80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O , which is at object distance p 1 . Lens 2 is mounted within the farther Figure 34-35 Problems 80 and 87. boxed region, at distance d . Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted). Find (a) the image distance i 2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side. Table 34-9 Problem 80 through 87: Two-Lens Systems. See the setup for these problems. p 1 Lens 1 d Lens 2 (a) i 2 (b) M (c) R/V (d) I/NI (e) Side 80 +10 C, 15 10 C, 8.0
80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O , which is at object distance p 1 . Lens 2 is mounted within the farther Figure 34-35 Problems 80 and 87. boxed region, at distance d . Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted). Find (a) the image distance i 2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side. Table 34-9 Problem 80 through 87: Two-Lens Systems. See the setup for these problems. p 1 Lens 1 d Lens 2 (a) i 2 (b) M (c) R/V (d) I/NI (e) Side 80 +10 C, 15 10 C, 8.0
80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther
Figure 34-35 Problems 80 and 87.
boxed region, at distance d. Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted).
Find (a) the image distance i2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side.
Table 34-9Problem 80 through 87: Two-Lens Systems. See the setup for these problems.
It is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an
electron microscope consist of electric and magnetic fields that control the electron beam.
As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at
x = d = 0.0100 m.
(a) the position of the electron
y, = 2.60e1014
m
(b) the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.