Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 7Q
Monochromatic red light is incident on a double slit and the interference pattern is viewed on a screen some distance away. Explain how the fringe pattern would change if the red light source is replaced by a blue light source.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 34 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 34.2 - A light beam in air with wavelength = 500 nm,...Ch. 34.4 - What are the values for the intensity I when (a) y...Ch. 34 - Prob. 1QCh. 34 - What is the evidence that light is energy?Ch. 34 - Why is light sometimes described as rays and...Ch. 34 - We can hear sounds around corners but we cannot...Ch. 34 - Can the wavelength of light be determined from...Ch. 34 - Two rays of light from the same source...Ch. 34 - Monochromatic red light is incident on a double...Ch. 34 - If Youngs double-slit experiment were submerged in...
Ch. 34 - Compare a double-slit experiment for sound waves...Ch. 34 - Suppose white light falls on the two slits of Fig....Ch. 34 - Why doesnt the light from the two headlights of a...Ch. 34 - Why are interference fringes noticeable only for a...Ch. 34 - Prob. 13QCh. 34 - Some coated lenses appear greenish yellow when...Ch. 34 - A drop of oil on a pond appears bright at its...Ch. 34 - (II) Derive the law of reflectionnamely, that the...Ch. 34 - (I) Monochromatic light falling on two slits 0.018...Ch. 34 - (I) The third-order bright fringe of 610 nm light...Ch. 34 - (II) Monochromatic light falls on two very narrow...Ch. 34 - (II) If 720-nm and 660-nm light passes through two...Ch. 34 - (II) A red laser from the physics lab is marked as...Ch. 34 - (II) Light of wavelength passes through a pair of...Ch. 34 - (II) Light of wavelength 680 nm falls on two slits...Ch. 34 - (II) A parallel beam of light from a HeNe laser,...Ch. 34 - (II) A physics professor wants to perform a...Ch. 34 - (II) Suppose a thin piece of glass is placed in...Ch. 34 - (II) In a double-slit experiment it is found that...Ch. 34 - (II) Two narrow slits separated by 1.0 mm are...Ch. 34 - (II) In a double-slit experiment, the third-order...Ch. 34 - (II) Light of wavelength 470 nm in air falls on...Ch. 34 - (II) A very thin sheet of plastic (n = 1.60)...Ch. 34 - (I) If one slit in Fig. 3412 is covered, by what...Ch. 34 - (II) Derive an expression similar to Eq. 342 which...Ch. 34 - (II) Show that the angular full width at half...Ch. 34 - (II) In a two-slit interference experiment, the...Ch. 34 - (III) Suppose that one slit of a double-slit...Ch. 34 - (III) (a) Consider three equally spaced and...Ch. 34 - (I) If a soap bubble is 120 nm thick, what...Ch. 34 - (I) How far apart are the dark fringes in Example...Ch. 34 - (II) (a) What is the smallest thickness of a soap...Ch. 34 - (II) A lens appears greenish yellow ( = 570 nm is...Ch. 34 - (II) A thin film of oil (nO = 1.50) with varying...Ch. 34 - (II) A thin oil slick (no = 1.50) finals on water...Ch. 34 - (II) A total of 31 bright and 31 dark Newtons...Ch. 34 - (II) A line metal foil separates one end of two...Ch. 34 - (II) How thick (minimum) should the air layer be...Ch. 34 - (II) A uniform thin film of alcohol (n = 1.36)...Ch. 34 - (II) Show that the radius r of the mth dark...Ch. 34 - (II) Use the result of Problem 33 to show that the...Ch. 34 - (II) When a Newtons ring apparatus (Fig. 3418) is...Ch. 34 - (II) A planoconvex lucite lens 3.4 cm in diameter...Ch. 34 - (II) Lets explore why only thin layers exhibit...Ch. 34 - (II) How far must the mirror M1 in a Michelson...Ch. 34 - (II) What is the wavelength of the light entering...Ch. 34 - (II) A micrometer is connected to the movable...Ch. 34 - (III) One of the beams of an interferometer (Fig,...Ch. 34 - (III) The yellow sodium D lines have wavelengths...Ch. 34 - Prob. 44PCh. 34 - (II) The luminous efficiency of a lightbulb is the...Ch. 34 - Light of wavelength 5.0 107 m passes through two...Ch. 34 - Television and radio waves reflecting from...Ch. 34 - A radio station operating at 88.5 MHz broadcasts...Ch. 34 - Light of wavelength 690 nm passes through two...Ch. 34 - Monochromatic light of variable wavelength is...Ch. 34 - Suppose the mirrors in a Michelson interferometer...Ch. 34 - A highly reflective mirror can be made for a...Ch. 34 - Calculate the minimum thickness needed for an...Ch. 34 - Stealth aircraft are designed to not reflect...Ch. 34 - Light or wavelength strikes a screen containing...Ch. 34 - Consider two antennas radiating 6.0-MHz radio...Ch. 34 - What is the minimum (non-zero) thickness for the...Ch. 34 - Lloyds mirror provides one way of obtaining a...Ch. 34 - Consider the antenna army of Example 345, Fig....Ch. 34 - A thin film of soap (n = 1.34) coats a piece of...Ch. 34 - Two identical sources S1 and S2, separated by...Ch. 34 - A two-slit interference set-up with slit...Ch. 34 - A radio telescope, whose two antennas are...Ch. 34 - In a compact disc (CD), digital information is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Chlorine has two isotopes, 35Cl and 37Cl; 75.77% of chlorine is 35Cl, and 24.23% is 37Cl. The atomic mass of 35...
Organic Chemistry (8th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
33. An organism having the genotype AaBbCcDdEe is self-fertilized. Assuming the five genes assort independently...
Genetic Analysis: An Integrated Approach (3rd Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose Youngs double-slit experiment is performed in air using red light and then the apparatus is immersed in water. What happens to the interference pattern on the screen? (a) It disappears. (b) The bright and dark fringes stay in the same locations, but the contrast is reduced. (c) The bright fringes are closer together. (d) The bright fringes are farther apart. (e) No change happens in the interference pattern.arrow_forwardWhat is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d=2.0103 mm? (b) 50 slits with the same separation? Assume that =600 nm.arrow_forwardA beam of monochromatic green light is diffracted by a slit of width 0.550 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.10 mm. Calculate the wavelength of the light.arrow_forward
- Consider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardMonochromatic light is incident on a pair of slits that are separated by 0.200 mm. The screen is 2.50 m away from the slits. a. If the distance between the central bright fringe and either of the adjacent bright fringes is 1.67 cm, find the wavelength of the incident light. b. At what angle does the next set of bright fringes appear?arrow_forward
- A monochromatic light of unknown wavelength is incident on a slit of width 20 m. A diffraction pattern is seen at a screen 2.5 m away where the central maximum is spread over a distance of 10.0 cm. Find the wavelength.arrow_forwardTwo slits 4.0106 m apart are illuminated by light of wavelength 600 nm. What is the highest order fringe in the interference pattern?arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forward
- Why is it much more difficult to see interference fringes for light reflected from a thick piece of glass than from a thin film? Would it be easier if monochromatic light were used?arrow_forwardA microwave of an unknown wavelength is incident on a single slit of width 6 cm. The angular width of the central peak is found to be 25°. Find the wavelength.arrow_forwardAn effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central maximum and the first maximum (loud) position along this line?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY