PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 77EAP
A 2.0-cm-tall object is placed in front of a mirror. A 1.0-cm- tall upright image is formed behind the mirror, 150 cm from the object. What is the focal length of the mirror?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 34 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - A fish in an aquarium with flat sides looks out at...Ch. 34 - Prob. 6CQCh. 34 - 7. The object and lens in FIGURE Q34.7 are...Ch. 34 - Prob. 8CQCh. 34 - Prob. 9CQCh. 34 - Prob. 10CQ
Ch. 34 - Prob. 11CQCh. 34 - Prob. 1EAPCh. 34 - a. How long (in ns) does it take light to travel...Ch. 34 - Prob. 3EAPCh. 34 - Prob. 4EAPCh. 34 - Prob. 5EAPCh. 34 - The mirror in FIGURE EX34.6 deflects a horizontal...Ch. 34 - Prob. 7EAPCh. 34 - Prob. 8EAPCh. 34 - Prob. 9EAPCh. 34 - Prob. 10EAPCh. 34 - Prob. 11EAPCh. 34 - Prob. 12EAPCh. 34 - Prob. 13EAPCh. 34 - Prob. 14EAPCh. 34 - Prob. 15EAPCh. 34 - Prob. 16EAPCh. 34 - Prob. 17EAPCh. 34 - Prob. 18EAPCh. 34 - Prob. 19EAPCh. 34 - Prob. 20EAPCh. 34 - An object is 20 cm in front of a converging lens...Ch. 34 - Prob. 22EAPCh. 34 - Prob. 23EAPCh. 34 - An object is 15 cm in front of a diverging lens...Ch. 34 - Prob. 25EAPCh. 34 - Prob. 26EAPCh. 34 - Find the focal length of the glass lens in FIGURE...Ch. 34 - Prob. 28EAPCh. 34 - Prob. 29EAPCh. 34 - Prob. 30EAPCh. 34 - Prob. 31EAPCh. 34 - Prob. 32EAPCh. 34 - Prob. 33EAPCh. 34 - 34. A 1.0-cm-tail object is 75 cm in front of a...Ch. 34 - Prob. 35EAPCh. 34 - Prob. 36EAPCh. 34 - Prob. 37EAPCh. 34 - Prob. 38EAPCh. 34 - Prob. 39EAPCh. 34 - Prob. 40EAPCh. 34 - Prob. 41EAPCh. 34 - Prob. 42EAPCh. 34 - Prob. 43EAPCh. 34 - Prob. 44EAPCh. 34 - Prob. 45EAPCh. 34 - Prob. 46EAPCh. 34 - Prob. 47EAPCh. 34 - Prob. 48EAPCh. 34 - Prob. 49EAPCh. 34 - 50. A horizontal meter stick is centered at the...Ch. 34 - Prob. 51EAPCh. 34 - 52. It’s nighttime, and you’ve dropped your...Ch. 34 - Prob. 53EAPCh. 34 - Prob. 54EAPCh. 34 - Prob. 55EAPCh. 34 - Prob. 56EAPCh. 34 - Prob. 57EAPCh. 34 - Prob. 58EAPCh. 34 - You’re visiting the shark tank at the aquarium...Ch. 34 - Prob. 60EAPCh. 34 - To determine the focal length of a lens, you place...Ch. 34 - Prob. 62EAPCh. 34 - Prob. 63EAPCh. 34 - Prob. 64EAPCh. 34 - Prob. 65EAPCh. 34 - Prob. 66EAPCh. 34 - Prob. 67EAPCh. 34 - Prob. 68EAPCh. 34 - Prob. 69EAPCh. 34 - An old-fashioned slide projector needs to create a...Ch. 34 - Prob. 71EAPCh. 34 - Prob. 72EAPCh. 34 - Prob. 73EAPCh. 34 - 74. An object is 60 cm from a screen. What are the...Ch. 34 - A wildlife photographer with a 200-mm-focal-length...Ch. 34 - A concave mirror has a 40 cm radius of curvature....Ch. 34 - A 2.0-cm-tall object is placed in front of a...Ch. 34 - Prob. 78EAPCh. 34 - Prob. 79EAPCh. 34 - Prob. 80EAPCh. 34 - Prob. 81EAPCh. 34 - Prob. 82EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY