Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 34, Problem 6P

(a)

To determine

The electric field the rod creates at the point (x=0,y=20.0cm,z=0) .

(a)

Expert Solution
Check Mark

Answer to Problem 6P

The electric field the rod creates at the point (x=0,y=20.0cm,z=0) is (3.148j^)kV/m .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The value of permittivity of free space is 8.85×1012F/m .

The figure given below shows the location of the thin rod with respect to axis.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 34, Problem 6P

Figure (1)

The formula for the electric field due to long wire is,

E=λrε0

Here,

ε0 is the permittivity of free space.

λ is the linear density of the electric charge.

r is the distance of the electric field from the origin at y axis.

Substitute 35.0nC/m for λ , 8.85×1012F/m for ε0 and 20.0cm for r in above equation to find E .

E=35.0nC(109C1nC)/m(20.0cm)(102m1cm)(8.85×1012F/m)=(3.148j^)kV/m

Conclusion:

Therefore, the electric field the rod creates at the point (x=0,y=20.0cm,z=0) is (3.148j^)kV/m .

(b)

To determine

The magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) .

(b)

Expert Solution
Check Mark

Answer to Problem 6P

The magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) is (5.25×107k^)T .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The value of the permeability constant is ×107Tm/A

The expression for the current in the wire is,

I=λv

Here,

v is the speed.

Substitute 35.0nC/m for λ and 1.50×107m/s for v in above equation to find I .

I=(35.0nC(109C1nC)/m)(1.50×107m/s)=0.525A

Thus, the current in the wire is 0.525A .

The formula for the magnetic flux due to wire is,

B=(μ0I2πr)

Here,

μ0 is the permeability constant.

Substitute 20.0cm for r , ×107Tm/A for μ0 and 0.525A for I in above equation to find B .

B=((0.525A)(×107H/m)2π(20.0cm(102m1cm)))=(5.25×107k^)T

Conclusion:

Therefore, the magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) is (5.25×107k^)T .

(c)

To determine

The force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s .

(c)

Expert Solution
Check Mark

Answer to Problem 6P

The force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s is 4.83×1016(j^)N .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The charge on an electron is 1.60×1019C

The Lorentz force on the electron is,

F=qE+qv×B

Here,

q is the charge on an electron.

Substitute 1.60×1019C for q , (3.148×103j^)V/m for E , (2.40×108)i^m/s for v and (5.25×107k^)T for B in above equation to find F .

F=[(1.60×1019C)((3.148×103j^)V/m)+(1.60×1019C)((2.40×108)i^m/s)×((5.25×107k^)T)]=5.04×1016(j^)N+2.06×1017(j^)N=4.83×1016(j^)N

Conclusion:

Therefore, the force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s is 4.83×1016(j^)N .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 34 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill