Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 34, Problem 42P

(a)

To determine

The intensity of solar radiation incident on Mars.

(a)

Expert Solution
Check Mark

Answer to Problem 42P

The intensity of solar radiation incident on Mars is 0.59W/m2 .

Explanation of Solution

Given info: The intensity of solar radiation incident on the Earth is 1.370W/m2

Write the formula to calculate the power of the sun radiation on the Earth is,

PE=IE(4πrE2)

Here,

PE is the power of the sun radiation on the Earth.

IE is the intensity of solar radiation incident on the Earth.

rE is the distance of the Earth from the Sun.

Write the formula to calculate the power of the sun radiation on the Mars is,

PM=IM(4πrM2)

Here,

PM is the power of the sun radiation on the Mars.

IM is the intensity of solar radiation incident on the Mars.

rM is the distance of the Mars from the Sun.

The power of the sun radiation is equal in all the planets.

PM=PE

Substitute IE(4πrE2) for PE and IM(4πrM2) for PM in the above equation.

IM(4πrM2)=IE(4πrE2)

Rearrange the above expression for IM .

IM=IErE2rM2

Substitute 1.370W/m2 for IE , 1.496×1011m for rE and 2.28×1011m for rM in the above equation to find the value of IM .

IM=(1.370W/m2)(1.496×1011m)2(2.28×1011m)2=0.59W/m2

Conclusion:

Therefore, the intensity of solar radiation incident on Mars is 0.59W/m2 .

(b)

To determine

The power of the sun radiation incident on the Mars.

(b)

Expert Solution
Check Mark

Answer to Problem 42P

The power of the sun radiation incident on the Mars is 3.853×1023W .

Explanation of Solution

Given info: The intensity of solar radiation incident on the Earth is 1.370W/m2

Write the formula to calculate the power of the sun radiation on the Mars is,

PM=IM(4πrM2)

Here,

PM is the power of the sun radiation on the Mars.

IM is the intensity of solar radiation incident on the Mars.

rM is the distance of the Mars from the Sun.

Substitute 2.28×1011m for rM and 0.59W/m2 for IM in the above equation to find the value of PM .

PM=(0.59W/m2)(4π)(2.28×1011m)2=3.853×1023W

Conclusion:

Therefore, the power of the sun radiation incident on the Mars is 3.853×1023W .

(c)

To determine

The radiation force that acts on Mars.

(c)

Expert Solution
Check Mark

Answer to Problem 42P

The radiation force that acts on Mars is 2.807×105N .

Explanation of Solution

Given info: The intensity of solar radiation incident on the Earth is 1.370W/m2 .

Write the formula to calculate the radiation force that acts on Mars is,

FM=4πIMRM2c

Here,

FM is radiation force that acts on Mars.

IM is intensity of solar radiation incident on Mars.

RM is the radius of the Mars.

c is the speed of light.

Substitute 3.37×106m for RM , 3×108m/s for c and 0.59W/m2 for IM in the above equation to find the value of FM .

FM=4π[0.59W/m2×(1N/ms1W/m2)](3.37×106m)23×108m/s=2.807×105N

Conclusion:

Therefore, the radiation force that acts on Mars is 2.807×105N .

(d)

To determine

The comparison of the gravitational attraction exerted by the Sun on Mars with the radiation force that acts on Mars.

(d)

Expert Solution
Check Mark

Answer to Problem 42P

The gravitational force exerted on the Mars is 5.84×1015 times the radiation force that acts on Mars.

Explanation of Solution

Given info: The intensity of solar radiation incident on the Earth is 1.370W/m2

Write the formula to calculate the gravitational force exerted on the Mars is,

FgM=GMmMrM2

Here,

FgM is the gravitational force exerted on the Mars.

M is the mass of the Sun.

mM is the mass of the Mars.

G is the gravitational constant.

Substitute 6.67×1011Nm2/kg2 for G , 1.99×1030kg for M , 6.42×1023kg for mM and 2.28×1011m for rM in the above equation to find the value of Fg .

FgM=(6.67×1011Nm2/kg2)(1.99×1030kg)(6.42×1023kg)(2.28×1011m)2=16.39×1020N

Thus the gravitational force exerted on the Mars is 16.39×1020N .

The ratio of gravitational force exerted on the Mars to the radiation force that acts on Mars is,

(Ratio)1=FgMFM

Substitute 16.39×1020N for FgM and 2.807×105N for FM in the above equation to find the value of (Ratio)1

(Ratio)1=16.39×1020N2.807×105N=5.84×1015

Thus the gravitational force exerted on the Mars is 5.84×1015 times the radiation force that acts on Mars.

Conclusion:

Therefore, the gravitational force exerted on the Mars is 5.84×1015 times the radiation force that acts on Mars.

(e)

To determine

The comparison of the ratio of the gravitational force exerted by the Sun on Earth to the radiation force that acts on Earth with the ratio found in part (d).

(e)

Expert Solution
Check Mark

Answer to Problem 42P

The ratio for the Earth is greater than the ratio of for the Mars.

Explanation of Solution

Given info: The intensity of solar radiation incident on the Earth is 1.370W/m2

Write the formula to calculate the radiation force that acts on Earth is,

FE=4πIERE2c

Here,

FE is radiation force that acts on Earth.

IE is intensity of solar radiation incident on Earth.

RE is the radius of the Earth.

c is the speed of light.

Substitute 6.37×106m for RE , 3×108m/s for c and 1.370W/m2 for IE in the above equation to find the value of FE .

FE=4π[1.370W/m2×(1N/ms1W/m2)](6.37×106m)23×108m/s=2.33×106N

Thus the radiation force that acts on Earth is 2.33×106N .

Write the formula to calculate the gravitational force exerted on the Earth is,

FgE=GMmErE2

Here,

FgE is the gravitational force exerted on the Earth.

M is the mass of the Earth.

mE is the mass of the Earth.

G is the gravitational constant.

Substitute 6.67×1011Nm2/kg2 for G , 1.99×1030kg for M , 5.98×1024kg for mE and 1.496×1011m for rE in the above equation to find the value of Fg .

FgE=(6.67×1011Nm2/kg2)(1.99×1030kg)(5.98×1024kg)(1.496×1011m)2=35.46×1021N

Thus the gravitational force exerted on the Earth is 35.46×1021N .

The ratio of gravitational force exerted on the Earth to the radiation force that acts on earth is,

(Ratio)2=FgEFE

Substitute 35.46×1021N for FgE and 2.33×106N for FE in the above equation to find the value of (Ratio)2

(Ratio)2=35.46×1021N2.33×106N=15.22×1015

Thus the gravitational force exerted on the Earth is 15.22×1015 times the radiation force that acts on Earth.

Thus, the ratio for the Earth is greater than the ratio of for the Mars.

Conclusion:

Therefore, the ratio for the Earth is greater than the ratio of for the Mars.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
is 0.3026 a finite number
Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that system of all three beads is zero. 91 E field lines 93 92 What charge does each bead carry? 91 92 -1.45 = = What is the net charge of the system? What charges have to be equal? μC 2.9 × What is the net charge of the system? What charges have to be equal? μC 93 = 2.9 μС 92 is between and 91 93° The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of the

Chapter 34 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY