(a)
The wavelength of the wave.
(a)
Answer to Problem 76CP
The wavelength of the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the wavelength is,
Here,
Substitute
Conclusion:
Therefore, the wavelength of the wave is
(b)
The time period of the wave.
(b)
Answer to Problem 76CP
The time period of the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the time period is,
Substitute
Conclusion:
Therefore, the time period of the wave is
(c)
The maximum value of the magnetic field.
(c)
Answer to Problem 76CP
The maximum value of the magnetic field is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the magnitude of the magnetic field is,
Here,
Substitute
Conclusion:
Therefore, the maximum value of the magnetic field is
(d)
The expression for electric field and the magnetic field.
(d)
Answer to Problem 76CP
The expression for electric field is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the angular frequency is,
Here,
Substitute the
The formula to calculate the angular constant is,
Here,
Substitute the
The formula to calculate the electric field is,
Substitute
The electric field is in the same direction of wave propagation.
The formula to calculate the magnetic field is,
Substitute
The direction of propagation of the magnetic field is perpendicular to that of the electric field.
Conclusion:
Therefore, the expression for electric field is
(e)
The average power per unit area the wave carries.
(e)
Answer to Problem 76CP
The average power per unit area the wave carries is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average power per unit area is,
Here,
Substitute
Conclusion:
Therefore, the average power per unit area the wave carries is
(f)
The average energy density in the
(f)
Answer to Problem 76CP
The average energy density in the radiation is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average energy density is,
Substitute
Conclusion:
Therefore, the average energy density in the radiation is
(g)
The radiation pressure exerted by the wave.
(g)
Answer to Problem 76CP
The radiation pressure exerted by the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the radiation pressure is,
Substitute
Conclusion:
Therefore, the radiation pressure exerted by the wave is
Want to see more full solutions like this?
Chapter 34 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning