Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 69AP
(a)
To determine
The steady state temperature of the box’s interior.
(b)
To determine
The steady state temperature of the box’s interior when sun is at an elevation angle of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The skin reflects most visible and IR-A (near-infrared) radiation. The epidermis is highly absorbing at UV-B and UV-C wavelengths and at IR-B and IR-C wavelengths. True or False
A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.40 ✕ 105 m2 and mass m = 4,900 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2.
A) If the solar sail were initially in Earth orbit at an altitude of 360 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.)
B) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration of 1193 µm/s2.
In a lab, a shielding layer on a device's housing is required to shield incident radiation.The reflectance of a coating material is 0.15, while the absorption coefficient (α) is 100 cm-1.Create a shield coating layer that allows only 0.5 percent of the light to pass through.Radiation from the incident source will be passed through the coating.
Chapter 34 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 34.1 - Prob. 34.1QQCh. 34.3 - What is the phase difference between the...Ch. 34.3 - Prob. 34.3QQCh. 34.5 - Prob. 34.4QQCh. 34.6 - Prob. 34.5QQCh. 34.7 - Prob. 34.6QQCh. 34.7 - Prob. 34.7QQCh. 34 - Prob. 1OQCh. 34 - Prob. 2OQCh. 34 - Prob. 3OQ
Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A radiometer has two square vanes (2.0 cm by 2.0 cm), attached to a light horizontal cross arm, and pivoted about a vertical axis through the center. The center of each vane is 12.0 cm from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. Radiant energy, having an intensity of 600 W/m2 , is incident normally upon the vanes. What is the radiation pressure on the blackened vane?arrow_forwardThe drawing shows an edge-on view of the solar panels on a communications satellite. The dashed line specifies the normal to the panels. Sunlight stikes the panels at an angle with respect to the normal. If the solar power impinging on the panels is 1700 W when = 78°, what is it when = 39°? Number Mi Normal Sunlight Unitsarrow_forwardThe photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 6.4 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10° m/s h = 6.626 x 10-34 J s s-1 Submit Answer Retry Entire Group No more group attempts remainarrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? in minutes (b) What is the energy in eV of a photon with a wavelength of 533 nm? in eV (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV? in metersarrow_forwardA laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?arrow_forwardQ blem 9: Two mirrors are held at an angle of y-130 degrees with respect to one another. A ray of light is incident of the first mirror at an angle of 8. When it reflects off of the mirror next to it makes an angle of o-13.5 degrees. Randomized Variables i -130 t(a) Write an expression for the angle of incidence 8. a V d i m Submit B 0 8 P Part (b) Numerically what is this angle? Hent 9 a h k t ( INH + NO 4 7 89 BO 4 5 6 1 2 3 0 A END CLEAR ACKUACE I give up!arrow_forward
- Consider a highly polished reflective surface. WHat would be the maximum radiation pressure excerted by sunlight in space (S = 1350W /m²). O 0.12PA 4.5 × 10–5 Pa 9.0 × 10–6Pa 2.3 x 10-6 Pa O 1.4 x 10-² Paarrow_forwardImagine a satellite located at a distance from the Sun of D = 151.1 × 10³ m. The satellite has a Solar Sail with a diameter of d = 1 km = 10³ m. The total mass of the satellite and sunshield is m = 100 kg. Calculate the acceleration of satellite resulting from radiation pressure of the Sun. Assume that the Solar Sail is oriented perpendicular to the Sun's rays, and that it is a perfect mirror and reflects every photon that strikes it. Give your answer in units of m/s² to at least 3 significant digits. Remember that entering scientific notation you should use (for example) 3.141592e-2 for 0.0314159. (You may also type in "0.0314159" - either should work).arrow_forward(a) A homeowner has a solar water heater installed on the roof of his house (as shown). The heater is a flat, closed box with excellent thermal insulation. Its interior is painted black, and its front face is made of insulating glass. Its emissivity for visible light is 0.900, and its emissivity for infrared light is 0.700. Light from the noontime Sun is incident perpendicular to the glass with an intensity of 1 000 W/m2, and no water enters or leaves the box. Find the steady-state temperature of the box’s interior. (b) What If? The homeowner builds an identical box with no water tubes. It lies flat on the ground in front of the house. He uses it as a cold frame, where he plants seeds in early spring. Assuming the same noontime Sun is at an elevation angle of 50.0°, find the steady-state temperature of the interior of the box when its ventilation slots are tightly closed.arrow_forward
- The photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 7.5 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10 m/s h = 6.626 x 10-34 J s marrow_forwardA 15.0 mV helium-neon laser emits a uniform beam of circular cross section with a diameter of 2.0 mm. Find a) the maximum electric field in the beam. b) the total energy contained in a 1.00 meter length of the beam. c) the momentum carried by a 1.00 meter length of the beam?arrow_forwardPhotons with a wavelength of 559 nm in air enter a plate of crown glass with index of refraction n = 1.52. Find the speed, wavelength, and energy of a photon in the glass. HINT (a) speed (in m/s) m/s (b) wavelength (in m) m (c) energy (in J) Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY