Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 15P
(a)
To determine
The frequency of the wave.
(b)
To determine
The magnetic field when electric field has maximum value in negative
(c)
To determine
The expression for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A linearly polarized sinusoidal electromagnetic wave moving in the positive x direction has a wavelength of 7.60 mm. The magnetic field of the wave oscillates
in the xz plane and has an amplitude of 6.90 µT. The magnitude of the electric field vector for this wave can be written as E =
Emax sin(kx – øt). What are
the following?
(a) the value of Emax
2070
V/m
(b) the wave number k
826.73
m-1
(c) the angular frequency w
2.48e11
rad/s
(d) the plane in which the electric field oscillates
the xz plane
the yz plane
the xy plane
(e) the average Poynting vector (Express your answer in vector form.)
Sav
11.37 · 10°i
X W/m²
(f) the radiation pressure exerted by this wave on a perfectly reflecting lightweight solar sail
3.79e-5
Pa
(g) the acceleration of the solar sail if its dimensions are 5.00 m x 8.00 m and its mass is 40.0 g
0.038
m/s²
A sinusoidal electromagnetic wave is propagating in vacuum in the +z-direction. If at a particular instant and at a certain point in space the electric field is in the +x-direction and has magnitude 4.00 V/m, what are the magnitude and direction of the magnetic field of the wave at this same point in space and instant in time?
A planar electromagnetic wave is propagating in the +x direction. At a certain point P and at a given instant, the wave's electric field is given by
What is the magnetic vector of the wave at the point P at that instant?
-0.27 nT k
● -6.8 nT j
O 6.8 nT k
O 0.27 nT k
O 0.27 nT j
E = (0.082 V/m)j.
Chapter 34 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 34.1 - Prob. 34.1QQCh. 34.3 - What is the phase difference between the...Ch. 34.3 - Prob. 34.3QQCh. 34.5 - Prob. 34.4QQCh. 34.6 - Prob. 34.5QQCh. 34.7 - Prob. 34.6QQCh. 34.7 - Prob. 34.7QQCh. 34 - Prob. 1OQCh. 34 - Prob. 2OQCh. 34 - Prob. 3OQ
Ch. 34 - Prob. 4OQCh. 34 - Prob. 5OQCh. 34 - Prob. 6OQCh. 34 - Prob. 7OQCh. 34 - Prob. 8OQCh. 34 - Prob. 9OQCh. 34 - Prob. 10OQCh. 34 - Prob. 11OQCh. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - Prob. 5CQCh. 34 - Prob. 6CQCh. 34 - Prob. 7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 9CQCh. 34 - Prob. 10CQCh. 34 - Prob. 11CQCh. 34 - Prob. 12CQCh. 34 - Prob. 13CQCh. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 10PCh. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - Prob. 45PCh. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54APCh. 34 - Prob. 55APCh. 34 - Prob. 56APCh. 34 - Prob. 57APCh. 34 - Prob. 58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - Prob. 60APCh. 34 - Prob. 61APCh. 34 - Prob. 62APCh. 34 - Prob. 63APCh. 34 - Prob. 64APCh. 34 - Prob. 65APCh. 34 - Prob. 66APCh. 34 - Prob. 67APCh. 34 - Prob. 68APCh. 34 - Prob. 69APCh. 34 - Prob. 70APCh. 34 - Prob. 71APCh. 34 - Prob. 72APCh. 34 - Prob. 73APCh. 34 - Prob. 74APCh. 34 - Prob. 75APCh. 34 - Prob. 76CPCh. 34 - Prob. 77CPCh. 34 - Prob. 78CPCh. 34 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardConsider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forward
- The electric part of an electromagnetic wave is given by E(x, t) = 0.75 sin (0.30x t) V/m in SI units. a. What are the amplitudes Emax and Bmax? b. What are the angular wave number and the wavelength? c. What is the propagation velocity? d. What are the angular frequency, frequency, and period?arrow_forwardA uniform circular disk of mass m = 24.0 g and radius r = 40.0 cm hangs vertically from a fixed, frictionless, horizontal hinge at a point on its circumference as shown in Figure P34.39a. A beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk, in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk rotate. Assuming the radiation is always perpendicular to the surface of the disk, find the angle through which the disk rotates from the vertical as it reaches its new equilibrium position shown in Figure 34.39b. Figure 34.39arrow_forwardThe electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forward
- Suppose the magnetic field of an electromagnetic wave is given by B = (1.5 1010) sin (kx t) T. a. What is the maximum energy density of the magnetic field of this wave? b. What is maximum energy density of the electric field?arrow_forwardAn electromagnetic wave with a peak magnetic field magnitude of 1.50 107 T has an associated peak electric field of what magnitude? (a) 0.500 1015 N/C (b) 2.00 105 N/C (c) 2.20 104 N/C (d) 45.0 N/C (e) 22.0 N/Carrow_forwardYou are working at NASA, in a division that is studying the possibility of rotating small spacecraft using radiation pressure from the Sun. You have built a scale model of a spacecraft as shown in Figure P33.47. The central body is a spherical shell with mass m = 0.500 kg and radius R = 15.0 cm. The thin rod extending from each side of the sphere is of mass mr = 50.0 g and of total length = 1.00 m. At each end of the rod arc circular plates of mass mp = 10.0 g and radius rp = 2.00 cm, with the center of each plate located at the end of the rod. One plate is perfectly reflecting and the other is perfectly absorbing. The initial configuration of this model is that it is at rest, mounted on a vertical axle with very low friction. To begin the simulation, you expose the model to sunlight of intensity Is = 1 000 W/m2, directed perpendicularly to the plates, for a time interval of t = 2.0 min. The sunlight is then removed from the model. Determine the angular velocity with which the model now rotates about the axle. Figure P33.47arrow_forward
- What is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forwardA typical microwave oven operates at a frequency of 2.45 GHz. What is the wavelength associated with the electromagnetic waves in the oven? (a) 8.20 m (b) 12.2 cm (c) 1.20 108 m (d) 8.20 109 m (e) none of those answersarrow_forwardA plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY