
(a)
The intensity of solar
(a)

Answer to Problem 42P
The intensity of solar radiation incident on Mars is
Explanation of Solution
Given info: The intensity of solar radiation incident on the Earth is
Write the formula to calculate the power of the sun radiation on the Earth is,
Here,
Write the formula to calculate the power of the sun radiation on the Mars is,
Here,
The power of the sun radiation is equal in all the planets.
Substitute
Rearrange the above expression for
Substitute
Conclusion:
Therefore, the intensity of solar radiation incident on Mars is
(b)
The power of the sun radiation incident on the Mars.
(b)

Answer to Problem 42P
The power of the sun radiation incident on the Mars is
Explanation of Solution
Given info: The intensity of solar radiation incident on the Earth is
Write the formula to calculate the power of the sun radiation on the Mars is,
Here,
Substitute
Conclusion:
Therefore, the power of the sun radiation incident on the Mars is
(c)
The radiation force that acts on Mars.
(c)

Answer to Problem 42P
The radiation force that acts on Mars is
Explanation of Solution
Given info: The intensity of solar radiation incident on the Earth is
Write the formula to calculate the radiation force that acts on Mars is,
Here,
Substitute
Conclusion:
Therefore, the radiation force that acts on Mars is
(d)
The comparison of the gravitational attraction exerted by the Sun on Mars with the radiation force that acts on Mars.
(d)

Answer to Problem 42P
The gravitational force exerted on the Mars is
Explanation of Solution
Given info: The intensity of solar radiation incident on the Earth is
Write the formula to calculate the gravitational force exerted on the Mars is,
Here,
Substitute
Thus the gravitational force exerted on the Mars is
The ratio of gravitational force exerted on the Mars to the radiation force that acts on Mars is,
Substitute
Thus the gravitational force exerted on the Mars is
Conclusion:
Therefore, the gravitational force exerted on the Mars is
(e)
The comparison of the ratio of the gravitational force exerted by the Sun on Earth to the radiation force that acts on Earth with the ratio found in part (d).
(e)

Answer to Problem 42P
The ratio for the Earth is greater than the ratio of for the Mars.
Explanation of Solution
Given info: The intensity of solar radiation incident on the Earth is
Write the formula to calculate the radiation force that acts on Earth is,
Here,
Substitute
Thus the radiation force that acts on Earth is
Write the formula to calculate the gravitational force exerted on the Earth is,
Here,
Substitute
Thus the gravitational force exerted on the Earth is
The ratio of gravitational force exerted on the Earth to the radiation force that acts on earth is,
Substitute
Thus the gravitational force exerted on the Earth is
Thus, the ratio for the Earth is greater than the ratio of for the Mars.
Conclusion:
Therefore, the ratio for the Earth is greater than the ratio of for the Mars.
Want to see more full solutions like this?
Chapter 34 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- 9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward1). Determine the equivalent capacitance of the combination shown when C = 12 pF. +11/20 2C C Carrow_forward3). When a capacitor has a charge of magnitude 80 μC on each plate the potential difference across the plates is 16 V. How much energy is stored in this capacitor when the potential difference across its plates is 42 V? a. 1.0 mJ b. 4.4 mJ c. 3.2 mJ d. 1.4 mJ e. 1.7 mJarrow_forward
- 5). A conductor of radius r, length & and resistivity p has resistance R. It is melted down and formed into a new conductor, also cylindrical, with one fourth the length of the original conductor. The resistance of the new conductor is a. 1 R 161 b. 1 R C. R d. 4R e. 16Rarrow_forward8). Determine the magnitude and sense (direction) of the current in the 10-Q2 resistor when I = 1.8 A. 30 V L 50 V 10 Ω 20 Ω a. 1.6 A right to left b. 1.6 A left to right C. 1.2 A right to left d. 1.2 A left to right e. 1.8 A left to right R PGarrow_forward7). Determine the current in the 10-V emf. 5.0 0 w 10 V 5.0 0 15 V 5.0 Ω a. 2.3 A b. 2.7 A c. 1.3 A d. 0.30 A e. 2.5 Aarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





