
Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 42P
Figure 34-40 gives the lateral magnification m of an object versus the object distance p from a lens as the object is moved along the central axis of the lens through a range of values for p out to ps = 20.0 cm. What is the magnification of the object when the object is 35 cm from the lens?
Figure 34-40 Problem 42.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
"looks" like a particle.)
...32 GO
In Fig. 22-55, positive
charge q = 7.81 pC is spread uni-
formly along a thin nonconducting
rod of length L = 14.5 cm. What are
the (a) magnitude and (b) direction
(relative to the positive direction
of the x axis) of the electric field
produced at point P, at distance
R = 6.00 cm from the rod along its
perpendicular bisector?
R
y
Р
+ + + + + + + + +-×
L
Figure 22-55 Problem 32.
1) A horizontal wire carrying current I in +x direction on the x-axis from x=0 to x=2
2) A vertical wire carrying current I upward at along the x=2 line from y=0 to y=8
3) A diagonal straight wire started at the origin and it ends at y=8 x=2 carrying a current in SE direction ( diagonally downward); y=4x
In a regional magnetic field that is given in vector notation by
B = ( y i - x j )/(x^2+y^2+25)
As components
Bx = (y+1)/x^2+y^2+25)
By = (1- x )/(x^2+y^2+25)
Find the integral expression for the net force for each branch carrying 5 ampere current.
An electric power station that operates at 30 KV and uses
a 15:1 set step-up ideal transformer is producing 400MW
(Mega-Watt) of power that is to be sent to a big city
with only 2.0% loss. What
which is located 270 km
away
is the resistance of the Two wires that are
being used?
52
Chapter 34 Solutions
Fundamentals of Physics
Ch. 34 - Figure 34-25 shows a fish and a fish stalker in...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...Ch. 34 - Figure 34-27 is an overhead view of a mirror maze...Ch. 34 - A penguin waddles along the central axis of a...Ch. 34 - When a T. rex pursues a jeep in the movie Jurassic...Ch. 34 - An object is placed against the center of a...Ch. 34 - The table details six variations of the basic...Ch. 34 - An object is placed against the center of a...Ch. 34 - Figure 34-30 shows four thin lenses, all of the...Ch. 34 - In Fig. 34-26, stick figure O stands in front of a...
Ch. 34 - Figure 34-31 shows a coordinate system in front of...Ch. 34 - You look through a camera towards an image of a...Ch. 34 - ILW A moth at about eye level is 10 cm in front of...Ch. 34 - In Fig. 34-32, an isotropic point source of light...Ch. 34 - Figure 34-33 shows an overhead view of a corridor...Ch. 34 - SSM WWW Figure 34-34 shows a small lightbulb...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - A concave shaving mirror has a radius of curvature...Ch. 34 - An object is placed against the center of a...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 9 through 16 GO 12 SSM 9, 11, 13 Spherical...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - 17 through 29 GO 22SSM 23, 29 More mirrors. Object...Ch. 34 - 17 through 29 GO 22 SSM 23, 29 More mirrors....Ch. 34 - GO Figure 34-37 gives the lateral magnification m...Ch. 34 - a A luminous point is moving at speed vo towards a...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - 32 through 38 GO 37, 38 SSM 33, 35 Spherical...Ch. 34 - In Fig. 34-38, a beam of parallel light rays from...Ch. 34 - A glass sphere has radius R = 5.0 cm and index of...Ch. 34 - A lens is made of glass having an index of...Ch. 34 - Figure 34-40 gives the lateral magnification m of...Ch. 34 - A movie camera with a single lens of focal length...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - You produce an image of the Sun on a screen, using...Ch. 34 - An object is placed against the center of a thin...Ch. 34 - SSM WWW A double-convex lens is to be made of...Ch. 34 - An object is moved along the central axis of a...Ch. 34 - SSM An illuminated slide is held 44 cm from a...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 50 through 57 GO 55, 57 SSM 53 Thin lenses. Object...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - 58 through 67 GO 61 SSM 59 Lenses with given...Ch. 34 - In Fig. 34-44, a real inverted image I of an...Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 69 through 79 GO 76, 78 SSM 75, 77 More lenses....Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - 80 through 87 GO 80, 87 SSM WWW 83 Two-lens...Ch. 34 - If the angular magnification of an astronomical...Ch. 34 - SSM In a microscope of the type shown in the Fig....Ch. 34 - Figure 34-46a shows the basic structure of an old...Ch. 34 - SSM Figure 34-47a shows the basic structure of a...Ch. 34 - An object is 10.0 mm from the objective of a...Ch. 34 - Someone with a near point Pn of 25 cm views a...Ch. 34 - An object is placed against the center of a...Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - 95 through 100 GO 95, 96, 99 Three-lens systems....Ch. 34 - SSM The formula 1/p 1/i = 1/f is called the...Ch. 34 - Figure 34-50a is an overhead view of two vertical...Ch. 34 - SSM Two thin lenses of focal lengths f1 and f2 are...Ch. 34 - Two plane mirrors are placed parallel to each...Ch. 34 - In Fig. 34-51, a box is somewhere at the left, on...Ch. 34 - In Fig. 34-52, an object is placed in front of a...Ch. 34 - SSM A fruit fly of height H sits in front of lens...Ch. 34 - You grind the lenses shown in Fig. 34-53 from flat...Ch. 34 - In Fig. 34-54, a fish watcher at point P watches a...Ch. 34 - A goldfish in a spherical fish bowl of radius R is...Ch. 34 - Figure 34-56 shows a beam expander made with two...Ch. 34 - You look down at a coin that lies at the bottom of...Ch. 34 - A pinhole camera has the hole a distance 12 cm...Ch. 34 - Light travels from point A to point B via...Ch. 34 - A point object is 10 cm away from a plane mirror,...Ch. 34 - Show that the distance between an object and its...Ch. 34 - A luminous object and a screen are a fixed...Ch. 34 - An eraser of height 1.0 cm is placed 10.0 cm in...Ch. 34 - A peanut is placed 40 cm in front of a two-lens...Ch. 34 - A coin is placed 20 cm in front of a two-lens...Ch. 34 - An object is 20 cm to the left of a thin diverging...Ch. 34 - In Fig 34-58 a pinecone is at distance p1 = 1.0 m...Ch. 34 - One end of a long glass rod n = 1.5 is a convex...Ch. 34 - A short straight object of length L lies along the...Ch. 34 - Prove that if a plane mirror is rotated through an...Ch. 34 - An object is 30.0 cm from a spherical mirror,...Ch. 34 - A concave mirror has a radius of curvature of 24...Ch. 34 - A pepper seed is placed in front of a lens. The...Ch. 34 - The equation 1/p 1/i = 2/r for spherical mirrors...Ch. 34 - A small cup of green tea is positioned on the...Ch. 34 - A 20-mm-thick layer of water n = 1.33 floats on a...Ch. 34 - A millipede sits 1.0 m in front of the nearest...Ch. 34 - a Show that if the object O in Fig. 34-19c is...Ch. 34 - Isaac Newton, having convinced himself erroneously...Ch. 34 - A narrow beam of parallel light rays is incident...Ch. 34 - A corner reflector, much used in optical,...Ch. 34 - A cheese enchilada is 4.00 cm in front of a...Ch. 34 - A grasshopper hops to a point on the central axis...Ch. 34 - In Fig. 34-60, a sand grain is 3.00 cm from thin...Ch. 34 - Suppose the farthest distance a person can see...Ch. 34 - A simple magnifier of focal length f is placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the approximate mass of 1 L of gasoline? Of helium in a balloon at T0,P0 ?
Fundamentals Of Thermodynamics
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
Did all the organisms living in or on the environments sampled grow on your nutrient agar? Briefly explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Explain why 92% of 2,4-pemtanedione exists as the enol tautomer in hexane but only 15% of this compound exists ...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Slink, from Toy Story, is a slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed (as shown in figure A) with no initial velocity and reaches the floor right as his velocity hits zero again (as shown in figure C).arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardCalculate the energy needed to melt 50 g of 0°C icearrow_forward
- Two very long line charges are set up along lines that areparallel to the z-axis, so they set up Electric fields strictly in the xy plane. One goes throughthe x-axis at x = −0.40 m and has charge a density λ1 = +12.0 μC/m, the other goesthrough the x-axis at x = +0.40 m has charge density λ2 = −8.0 μC/m.A. Find the Electric field at point A: (0.40, 0.80) (distances in meters). Give answersin unit vector notation and draw a graph of the x-y plane with the E-fields you justfound.B. Find a point on the x-axis at which the total E-field is 0.arrow_forwardIn order to increase the amount of exercise in her daily routine, Tara decides to walk up the four flights of stairs to her car instead of taking the elevator. Each of the steps she takes are 18.0 cm high, and there are 12 steps per flight. (a) If Tara has a mass of 77.0 kg, what is the change in the gravitational potential energy of the Tara-Earth system (in J) when she reaches her car? ] (b) If the human body burns 1.5 Calories (6.28 x 10³ J) for each ten steps climbed, how much energy (in J) has Tara burned during her climb? ] (c) How does the energy she burned compare to the change in the gravitational potential energy of the system? Eburned Δυarrow_forwardA 4.40 kg steel ball is dropped onto a copper plate from a height of 10.0 m. If the ball leaves a dent 2.75 mm deep, what is the average force exerted by the plate on the ball during the impact? Narrow_forward
- A block of mass m = 7.00 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Assume h₂ = 7.80 m.) a m ha 3.20 m 2.00 m i (a) Determine the block's speed at points ® and point B ©. m/s m/s point (b) Determine the net work done by the gravitational force on the block as it moves from point J A to pointarrow_forwardA 1.10 x 10²-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius R R B 2R/3 (a) Calculate its gravitational potential energy at A relative to B. ] (b) Calculate its kinetic energy at B. ] (c) Calculate its speed at B. m/s (d) Calculate its potential energy at C relative to B. J (e) Calculate its kinetic energy at C. ] = 26.5 cm (figure below).arrow_forwardReport on the percentage errors (with uncertainty) between the value of 'k' from the F vs displacement plot and each of the values of 'k' from the period measurements. Please comment on the goodness of the results. Value of k = Spring constant k = 50.00 N/m Each of the values of k from period measurements: Six Measurements of time for 5 osccilations: t1 = 7.76s, t2=8.00s, t3=7.40s, t4=7.00s, t5=6.90s, t6=7.10s (t1-tavg)^2 = (7.76-7.36)^2 = 0.16%(t2-tavg)^2 =(8.00-7.36)^2 = 0.4096%(t3-tavg)^2 =(7.40-7.36)^2 = 0.0016%(t4-tavg)^2 =(7.00-7.36)^2 = 0.1296%(t5-tavg)^2 =(6.90-7.36)^2 = 0.2116%(t6-tavg)^2 =(7.10-7.36)^2 = 0.0676arrow_forward
- No chatgpt pls will upvotearrow_forwardBased on the two periods (from hand timed and ultrasonic sensor), find the value of 'k' they suggest from the physics and from the value of the hanging mass. hand time period is 1.472s and ultrasonic sensor time period is 1.44sarrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY