BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D. 34.111 To determine whether a frog can judge distance by means of the amount its lens must move to focus on an object, researchers covered one eye with an opaque material. An insect was placed in front of the frog, and the distance that the frog snapped its tongue out to catch the insect was measured with high-speed video. The experiment was repeated with a contact lens over the eye to determine whether the frog could correctly judge the distance under these conditions. If such an experiment is performed twice, once with a lens of power −9 D and once with a lens of power −15 D, in which case does the frog have to focus at a shorter distance, and why? (a) With the −9-D lens; because the lenses are diverging, the lens with the longer focal length creates an image that is closer to the frog, (b) With the −15-D lens; because the lenses are diverging, the lens with the shorter focal length creates an image that is closer to the frog. (c) With the −9-D lens; because the lenses are converging, the lens with the longer focal length creates a larger real image. (d) With the −15-D lens; because the lenses are converging, the lens with the shorter focal length creates a larger real image.
BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D. 34.111 To determine whether a frog can judge distance by means of the amount its lens must move to focus on an object, researchers covered one eye with an opaque material. An insect was placed in front of the frog, and the distance that the frog snapped its tongue out to catch the insect was measured with high-speed video. The experiment was repeated with a contact lens over the eye to determine whether the frog could correctly judge the distance under these conditions. If such an experiment is performed twice, once with a lens of power −9 D and once with a lens of power −15 D, in which case does the frog have to focus at a shorter distance, and why? (a) With the −9-D lens; because the lenses are diverging, the lens with the longer focal length creates an image that is closer to the frog, (b) With the −15-D lens; because the lenses are diverging, the lens with the shorter focal length creates an image that is closer to the frog. (c) With the −9-D lens; because the lenses are converging, the lens with the longer focal length creates a larger real image. (d) With the −15-D lens; because the lenses are converging, the lens with the shorter focal length creates a larger real image.
BIO AMPHIBIAN VISION. The eyes of amphibians such as frogs have a much flatter cornea but a more strongly curved (almost spherical) lens than do the eyes of air-dwelling mammals. In mammalian eyes, the shape (and therefore the focal length) of the lens changes to enable the eye to focus at different distances. In amphibian eyes, the shape of the lens doesn’t change. Amphibians focus on objects at different distances by using specialized muscles to move the lens closer to or farther from the retina, like the focusing mechanism of a camera. In air, most frogs are nearsighted; correcting the distance vision of a typical frog in air would require contact lenses with a power of about −6.0 D.
34.111 To determine whether a frog can judge distance by means of the amount its lens must move to focus on an object, researchers covered one eye with an opaque material. An insect was placed in front of the frog, and the distance that the frog snapped its tongue out to catch the insect was measured with high-speed video. The experiment was repeated with a contact lens over the eye to determine whether the frog could correctly judge the distance under these conditions. If such an experiment is performed twice, once with a lens of power −9 D and once with a lens of power −15 D, in which case does the frog have to focus at a shorter distance, and why? (a) With the −9-D lens; because the lenses are diverging, the lens with the longer focal length creates an image that is closer to the frog, (b) With the −15-D lens; because the lenses are diverging, the lens with the shorter focal length creates an image that is closer to the frog. (c) With the −9-D lens; because the lenses are converging, the lens with the longer focal length creates a larger real image. (d) With the −15-D lens; because the lenses are converging, the lens with the shorter focal length creates a larger real image.
For which value of θ is the range of a projectile fired from ground level a maximum?
90° above the horizontal
45° above the horizontal
55° above the horizontal
30° above the horizontal
60° above the horizontal
A map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.
Chapter 34 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.