College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 25CQ
Explain how good thermal contact with liquid nitrogen can keep object at a temperature of 77 K (liquid nitrogen's boiling point at atmospheric pressure).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The intensity of solar radiation reaching Mars averages about 580 W/m2.
a) Assuming the Sun radiates as a blackbody, estimate the surface temperature of the Sun.
b) Assuming that Mars behaves like a blackbody, how much energy is absorbed per unit time. What is its equilibrium temperature if all this energy is re-radiated back into space?
The escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity vrms equal to the Moon’s escape velocity?
43. The escape velocity from the Moon is much smaller than
from Earth and is only 2.38 km/s. At what temperature
would hydrogen molecules (molecular mass is equal to
2.016 g/mol) have an average velocity vms equal to the
Moon's escape velocity?
Chapter 34 Solutions
College Physics
Ch. 34 - Explain why it only appears that we are at the...Ch. 34 - If there is no observable edge to the universe,...Ch. 34 - If the universe is infinite, does it have a...Ch. 34 - Another known cause of red shift in light is the...Ch. 34 - If some unknown cause of red shiftsuch as light...Ch. 34 - Olbers’s paradox poses an interesting question: If...Ch. 34 - If the cosmic microwave background radiation...Ch. 34 - The decay of one type of Kmeson is cited as...Ch. 34 - Distances to local galaxies are determined by...Ch. 34 - Distances to very remote galaxies are estimated...
Ch. 34 - If the smallest meaningful time interval is...Ch. 34 - Quantum gravity, if developed, would be an...Ch. 34 - Does observed gravitational lensing correspond to...Ch. 34 - Suppose you measure the red shifts of all the...Ch. 34 - What are gravitational waves, and have they yet...Ch. 34 - Is the event horizon of a black hole the actual...Ch. 34 - Suppose black holes radiate their mass away and...Ch. 34 - Discuss the possibility that star velocities at...Ch. 34 - How does relativistic time dilation prohibit...Ch. 34 - If neutrino oscillations do occur, will they...Ch. 34 - Lacking direct evidence of WIMPs as dark matter,...Ch. 34 - Must a complex system be adaptive to be of...Ch. 34 - State a necessary condition for a System to be...Ch. 34 - What is critical temperature Tc? Do all materials...Ch. 34 - Explain how good thermal contact with liquid...Ch. 34 - Not only is liquid nitrogen a cheaper coolant than...Ch. 34 - For experimental evidence particularly of...Ch. 34 - Discuss whether you think there are limits to what...Ch. 34 - Find the approximate mass of the luminous matter...Ch. 34 - Find the approximate mass of the dark and luminous...Ch. 34 - (a) Estimate the mass of the luminous matter in...Ch. 34 - If a galaxy is 500 Mly away from us, how fast do...Ch. 34 - On average, how far away are galaxies mat are...Ch. 34 - Our solar system orbits the center of the Milky...Ch. 34 - (a) What is the approximate speed relative to us...Ch. 34 - (a) Calculate The approximate age of the universe...Ch. 34 - Assuming a circular orbit for the Sun about the...Ch. 34 - (a) What is the approximate force of gravity on a...Ch. 34 - Andromeda galaxy is the closest large galaxy and...Ch. 34 - (a) A particle and its antiparticle are at rest...Ch. 34 - The average particle energy needed to observe...Ch. 34 - The peak intensity of the CMBR occurs at a...Ch. 34 - (a) What Hubble constant corresponds to an...Ch. 34 - Show that the velocity of a star orbiting its...Ch. 34 - The core of a star collapses during a supernova,...Ch. 34 - Using data from the previous problem, find the...Ch. 34 - Distances to the nearest stars (up to 500 by away)...Ch. 34 - (a) Use the Heisenberg uncertainty principle to...Ch. 34 - Construct Your Own Problem Consider a star moving...Ch. 34 - What is the Schwarzschild radius of a blank hole...Ch. 34 - Black holes with masses smaller than muse formed...Ch. 34 - Supermassive black holes are thought to exist at...Ch. 34 - Construct Your Own Problem Consider a supermassive...Ch. 34 - The characteristic length of entities in...Ch. 34 - If the dark matter in the Milky Way were composed...Ch. 34 - The critical mass density needed to just halt the...Ch. 34 - Assume the average density of the universe is 0.1...Ch. 34 - To get an idea of how empty deep spam is on the...Ch. 34 - A section of superconducting wire carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
50. (I) Find the center of mass of the three-mass system shown in Fig. 7-37 relative to the 1.00-kg mass.
Physics: Principles with Applications
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (4th Edition)
A child has mass 6.0 kg and slides down a 35incline with constant speed under the action of a 34-N force acting...
University Physics Volume 1
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. An expensive vacuum system can achieve a pressure as low as 1 x 10-7N/m² at 20 °C. How many atoms are there in a cubic centimeter at this pressure and temperature? The Boltzman's constant k= 1.38 x 10 m²kg/(s²K) -23 Number of atoms:arrow_forwardThe escape speed from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would chlorine molecules (with a molecular mass equal to 70.91 g/mol) have an average speed vrms equal to the Moon's escape speed?arrow_forwardSuppose you have a sphere with a surface area of about 1.3 m2. If the temperature of the sphere were 373 K, what would be the power emitted from the sphere? Assume the sphere is a blackbody.arrow_forward
- The escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature (in K) would hydrogen molecules (molar mass is equal to 2.016 g/mol) have an average velocity vrms equal to the Moon's escape velocity?arrow_forwardThe eye of a stove top has a total area of 0.0628 m2 and gives off energy at a rate of 8720 W. If we assume the stove top eye to be a perfect blackbody, what would be the temperature of the eye in Kelvin?arrow_forwardi need the answer quicklyarrow_forward
- 41. (a) What is the average kinetic energy in joules of hydrogen atoms on the 5500oC surface of the Sun? (b)What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is6.00×105 K?arrow_forward1. (a) What is the average kinetic energy in joules of a hydrogen atom on the 5500 °C surface of the Sun? The Boltzmann's constant is k=1.38×10-23 J/K J KE av (b) What is the average kinetic energy of a helium atom in a region of the solar corona where the temperature is 6 x 105⁰K? KE Fav Jarrow_forward1. An expensive vacuum system can achieve a pressure as low as 1 X10 N/m² at 20 °C. How many atoms are there in a cubic centimeter at this pressure and temperature? The Boltzman's constant k=1.38 x 10-23 m²kg/(s²K) Number of atoms:arrow_forward
- The next four questions use this description. Our Sun has a peak emission wavelength of about 500 nm and a radius of about 700,000 km. Your dark-adapted eye has a pupil diameter of about 7 mm and can detect light intensity down to about 1.5 x 10-11 W/m². Assume the emissivity of the Sun is equal to 1. First, given these numbers, what is the surface temperature of the Sun in Kelvin to 3 significant digits? 5,796arrow_forward5arrow_forward1. (a) What is the average kinetic energy in joules of a hydrogen atom on the 5500 °C surface of the Sun? The Boltzmann's constant is k=1.38x10-23 J/K J KE av: (b) What is the average kinetic energy of a helium atom in a region of the solar corona where the temperature is 6 x 105⁰K? KE av: Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY