College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 23PE
Black holes with masses smaller than muse formed in supernovas may have been created in the Big Bang. Calculate the radius of one that has a mass equal to the Earth’s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Black holes with masses smaller than those formed in supernovas may have been created in the Big Bang.Calculate the radius of one that has a mass equal to the Earth’s.
Many galaxies appear to have supermassive black holes in their centers powering active galactic nuclei (also called AGN). The
Schwarzschild radius of these supermassive black holes can be estimated in part by watching for changes in the brightness of the
surrounding AGN and measuring the timescale of those changes.
Assume we observe an AGN and determine it varies with a timescale of 9.85 minutes, which implies a Schwarzschild radius on the order
of 1.77x1011 meters. Estimate the mass of this supermassive black hole.
kg
In 1999 scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun but occupying less space than our moon. Suppose that of these black holes has a mass of 1x10^3 sun's and radius equal to one-half the radius of our moon. What is the density in grams per cubic centimeter? The mass of the sun is 2.0x10^30 kg and the radius of the moon is 2.16x10^3 mi.
Chapter 34 Solutions
College Physics
Ch. 34 - Explain why it only appears that we are at the...Ch. 34 - If there is no observable edge to the universe,...Ch. 34 - If the universe is infinite, does it have a...Ch. 34 - Another known cause of red shift in light is the...Ch. 34 - If some unknown cause of red shiftsuch as light...Ch. 34 - Olbers’s paradox poses an interesting question: If...Ch. 34 - If the cosmic microwave background radiation...Ch. 34 - The decay of one type of Kmeson is cited as...Ch. 34 - Distances to local galaxies are determined by...Ch. 34 - Distances to very remote galaxies are estimated...
Ch. 34 - If the smallest meaningful time interval is...Ch. 34 - Quantum gravity, if developed, would be an...Ch. 34 - Does observed gravitational lensing correspond to...Ch. 34 - Suppose you measure the red shifts of all the...Ch. 34 - What are gravitational waves, and have they yet...Ch. 34 - Is the event horizon of a black hole the actual...Ch. 34 - Suppose black holes radiate their mass away and...Ch. 34 - Discuss the possibility that star velocities at...Ch. 34 - How does relativistic time dilation prohibit...Ch. 34 - If neutrino oscillations do occur, will they...Ch. 34 - Lacking direct evidence of WIMPs as dark matter,...Ch. 34 - Must a complex system be adaptive to be of...Ch. 34 - State a necessary condition for a System to be...Ch. 34 - What is critical temperature Tc? Do all materials...Ch. 34 - Explain how good thermal contact with liquid...Ch. 34 - Not only is liquid nitrogen a cheaper coolant than...Ch. 34 - For experimental evidence particularly of...Ch. 34 - Discuss whether you think there are limits to what...Ch. 34 - Find the approximate mass of the luminous matter...Ch. 34 - Find the approximate mass of the dark and luminous...Ch. 34 - (a) Estimate the mass of the luminous matter in...Ch. 34 - If a galaxy is 500 Mly away from us, how fast do...Ch. 34 - On average, how far away are galaxies mat are...Ch. 34 - Our solar system orbits the center of the Milky...Ch. 34 - (a) What is the approximate speed relative to us...Ch. 34 - (a) Calculate The approximate age of the universe...Ch. 34 - Assuming a circular orbit for the Sun about the...Ch. 34 - (a) What is the approximate force of gravity on a...Ch. 34 - Andromeda galaxy is the closest large galaxy and...Ch. 34 - (a) A particle and its antiparticle are at rest...Ch. 34 - The average particle energy needed to observe...Ch. 34 - The peak intensity of the CMBR occurs at a...Ch. 34 - (a) What Hubble constant corresponds to an...Ch. 34 - Show that the velocity of a star orbiting its...Ch. 34 - The core of a star collapses during a supernova,...Ch. 34 - Using data from the previous problem, find the...Ch. 34 - Distances to the nearest stars (up to 500 by away)...Ch. 34 - (a) Use the Heisenberg uncertainty principle to...Ch. 34 - Construct Your Own Problem Consider a star moving...Ch. 34 - What is the Schwarzschild radius of a blank hole...Ch. 34 - Black holes with masses smaller than muse formed...Ch. 34 - Supermassive black holes are thought to exist at...Ch. 34 - Construct Your Own Problem Consider a supermassive...Ch. 34 - The characteristic length of entities in...Ch. 34 - If the dark matter in the Milky Way were composed...Ch. 34 - The critical mass density needed to just halt the...Ch. 34 - Assume the average density of the universe is 0.1...Ch. 34 - To get an idea of how empty deep spam is on the...Ch. 34 - A section of superconducting wire carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (4th Edition)
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A black hole is an object with mass, but no spatial extent. It truly is a particle. A black hole may form from a dead star. Such a black hole has a mass several times the mass of the Sun. Imagine a black hole whose mass is ten times the mass of the Sun. a. Would you expect the period of an object orbiting the black hole with a semimajor axis of 1 AU to have a period greater than, less than, or equal to 1 yr? Explain your reasoning. b. Use Equation 7.6 to calculate this period.arrow_forwardUse the result from Exercise 24.21 to calculate the radius of a black hole with a mass equal to: the Earth, a B0-type main-sequence star, a globular cluster, and the Milky Way Galaxy. Look elsewhere in this text and the appendixes for tables that provide data on the mass of these four objects.arrow_forwardA stellar black hole may form when a massive star dies. The mass of the star collapses down to a single point. Imagine an astronaut orbiting a black hole having eight times the mass of the Sun. Assume the orbit is circular. a. Find the speed of the astronaut if his orbital radius is r = 1 AU. b. Find his speed if his orbital radius is r = 11.8 km. c. CHECK and THINK: Compare your answers to the speed of light in a vacuum. What would the astronauts orbital speed be if his orbital radius were smaller than 11.8 km?arrow_forward
- Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 10.0 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force.arrow_forwardIf the Sun were to collapse into a black hole, the point of no return for an investigator would be approximately 3 km from the center singularity. Would the investingator be able to survive visiting even 300 km from the center? Answer this by finding the difference in the gravitatoinal attraction the black holes exerts on a 1.0-kg mass at the head and at the feet of the investigator.arrow_forwardThe next step in deciding whether the object in Exercise 25.25 is a black hole is to estimate the density of this mass. Assume that all of the mass is spread uniformly throughout a sphere with a radius of 20 lighthours. What is the density in kg/km3? (Remember that the volume of a sphere is given by V=43R3 .) Explain why the density might be even higher than the value you have calculated. How does this density compare with that of the Sun or other objects we have talked about in this book?arrow_forward
- The Schwarzschild radius of a certain black hole is 30n kilometers. The mass of this black hole, in units of solar masses, Mo, is given by M x aMo What is the value of a, if n = 5 (give only an integer value).arrow_forwardA black hole has an event horizon radius of 5.00××1033 m. a) What is its mass? b) Determine the gravitational acceleration it produces at a distance of 5.01××1033 m from its center. c) Determine the escape speed at a distance of 5.01××1033 m from its center.arrow_forwardwhat is the mass of the black hole ? give your answer as a multiple of Ms where Ms is the solar mass, Ms = 2.0 * 10^(30) express your answer as a multiple of the solar mass mass Ms.arrow_forward
- What is the orbital period of a bit of matter in an accretion disk that is located 4 ✕ 105 km from a 87 M black hole? Use the circular orbit velocity formula.arrow_forwardHow massive would a black hole have to be to have an event horizon the same size as the Earth? Assume the Earth's radius is 6,300 km. Answer in solar masses.arrow_forwardHow large is the Schwarzschild radius of a black hole containing a mass equal to that of the Earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning