MINIMIZING COSTS Perth Mining Company operates two mines for the purpose of extracting gold and silver. The Saddle Mine costs
a. How many days should each mine be operated so that the target can be met at a minimum cost?
b. Find the range of values that the Saddle Mine's daily operating cost can assume without changing the optimal solution.
c. Find the range of values that the requirement for gold can assume.
d. Find the shadow price for the requirement for gold.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Finite Mathematics for the Managerial, Life, and Social Sciences
- 3 Evaluate the determinants 5 17 3 0 1 2 -10-30 (a) 2 4-3 (b) -2 3 0 1 11 0 2 10-10arrow_forwardOne deck of cards is made of 4 suits (Spade, Diamond, Heart, Club) and 13 cards (A -> K), totaling 52 cards. A flush is a combination of 5 cards with the same suit. e.g. 3d 5d 9d Jd Kd A straight flush is a combination of 5 cards with the same suit, but also connected to each other. (e.g. highest straight flush is 10s Js Qs Ks As, the lowest straight flush is Ah, 2h, 3h, 4h, 5h) A straight flush is not considered a flush. Question 2 of 4 Draw random 5 cards (in one action) from the 52 cards deck, and calculate the probability of a flush. Provide the formula you used.arrow_forward2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forward
- Game: dropping marbles from a 100-floor tower, given unlimited amount of identical marbles. if marble breaks when dropped from level X -> it breaks from all levels higher than X if marble doesn't break when dropped from level Y -> no marbles will break when dropped from level lower than Y Goal of Game: Find the highest level, from which the marbles doesn't break. Please design a testing plan to minimize the worst-case number-of-tests required to find the answer, with the constraint you can only break max 2 marbles. What is the minimum number of tests required? Explain your testing plan and how you arrived at this number.arrow_forwardHeight = 1 Width=1 How much is the shaded area in the chart above?arrow_forward(a) Given z = x + jy determine if f (z) = z4 is analytic.(b) On an Argand Diagram sketch the region |z| < 1.(c) Map the region |z| < 1 into the function plane f (z) = U + jV , defined as f (z) = z4.arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage