Law Enforcement in the 1980s and 1990s Refer to Exercise 93. Total spending on police, courts, and prisons in the period 1982–1999 could be approximated by P ( t ) = 1.745 t + 29.84 billon dollars ( 2 ≤ t ≤ 19 ) C ( t ) = 1.097 t + 10.65 billon dollars ( 2 ≤ t ≤ 19 ) , J ( t ) = 1.919 t + 12.36 billon dollars ( 2 ≤ t ≤ 19 ) respectively, where t is time in years since 1980. Compute lim t → + ∞ P ( t ) P ( t ) + C ( t ) + J ( t ) totwo decimal places, and intercept the result. [ HINT: See Example 4.]
Law Enforcement in the 1980s and 1990s Refer to Exercise 93. Total spending on police, courts, and prisons in the period 1982–1999 could be approximated by P ( t ) = 1.745 t + 29.84 billon dollars ( 2 ≤ t ≤ 19 ) C ( t ) = 1.097 t + 10.65 billon dollars ( 2 ≤ t ≤ 19 ) , J ( t ) = 1.919 t + 12.36 billon dollars ( 2 ≤ t ≤ 19 ) respectively, where t is time in years since 1980. Compute lim t → + ∞ P ( t ) P ( t ) + C ( t ) + J ( t ) totwo decimal places, and intercept the result. [ HINT: See Example 4.]
Law Enforcement in the 1980s and 1990s Refer to Exercise 93. Total spending on police, courts, and prisons in the period 1982–1999 could be approximated by
P
(
t
)
=
1.745
t
+
29.84
billon dollars
(
2
≤
t
≤
19
)
C
(
t
)
=
1.097
t
+
10.65
billon dollars
(
2
≤
t
≤
19
)
,
J
(
t
)
=
1.919
t
+
12.36
billon dollars
(
2
≤
t
≤
19
)
respectively, where t is time in years since 1980. Compute
lim
t
→
+
∞
P
(
t
)
P
(
t
)
+
C
(
t
)
+
J
(
t
)
totwo decimal places, and intercept the result. [HINT: See Example 4.]
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.