Linear Algebra: A Modern Introduction
4th Edition
ISBN: 9781285463247
Author: David Poole
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.3, Problem 55EQ
To determine
To find: The inverse of given matrix using the Gauss-Jordan method.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Use the graph to solve 3x2-3x-8=0
Chapter 3 Solutions
Linear Algebra: A Modern Introduction
Ch. 3.1 - Let...Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let...Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let...Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let...Ch. 3.1 - Let...Ch. 3.1 - Let...
Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let
In Exercises 1-16, compute the indicated...Ch. 3.1 - Let...Ch. 3.1 - Let...Ch. 3.1 - Let...Ch. 3.1 - Let...Ch. 3.1 - Give an example of a nonzero 22 matrix A such that...Ch. 3.1 - Let A=[2613]. Find 22 matrices B and C such that...Ch. 3.1 - A factory manufactures three products (doohickies,...Ch. 3.1 - Referring to Exercise 19, suppose that the unit...Ch. 3.1 - In Exercises 21-22, write the given system of...Ch. 3.1 - In Exercises 21-22, write the given system of...Ch. 3.1 - In Exercises 23-28, let A=[102311201] and...Ch. 3.1 - In Exercises 23-28, let
and
24. Use the...Ch. 3.1 - In Exercises 23-28, let
and
25. Compute the...Ch. 3.1 - In Exercises 23-28, let A=[102311201] and...Ch. 3.1 - In Exercises 23-28, let
and
27. Use the...Ch. 3.1 - Prob. 28EQCh. 3.1 - In Exercises 29 and 30, assume that the product AB...Ch. 3.1 - Prob. 30EQCh. 3.1 -
In Exercises 31-34, compute AB by block...Ch. 3.1 - In Exercises 31-34, compute AB by block...Ch. 3.1 - In Exercises 31-34, compute AB by block...Ch. 3.1 - In Exercises 31-34, compute AB by block...Ch. 3.1 - Prob. 35EQCh. 3.1 - Let B=[12121212]. Find, with justification, B2015.Ch. 3.1 - Let A=[1101]. Find a formula for An(n1) and verify...Ch. 3.1 - 38. Let
(a) Show that
(b) Prove, by mathematical...Ch. 3.1 - In each of the following, find the 66matrixA=[aij]...Ch. 3.2 - In Exercises 1-4, solve the equation for X, given...Ch. 3.2 - In Exercises 1-4, solve the equation for X, given...Ch. 3.2 - In Exercises 1-4, solve the equation for X, given...Ch. 3.2 - In Exercises 1-4, solve the equation for X, given...Ch. 3.2 - In Exercises 5-8, write B as a linear combination...Ch. 3.2 - In Exercises 5-8, write B as a linear combination...Ch. 3.2 - In Exercises 5-8, write B as a linear combination...Ch. 3.2 - In Exercises 5-8, write B as a linear combination...Ch. 3.2 - In Exercises 9-12, find the general form of the...Ch. 3.2 - In Exercises 9-12, find the general form of the...Ch. 3.2 - In Exercises 9-12, find the general form of the...Ch. 3.2 - In Exercises 9-12, find the general form of the...Ch. 3.2 - In Exercises 13-16, determine whether the given...Ch. 3.2 - In Exercises 13-16, determine whether the given...Ch. 3.2 - In Exercises 13-16, determine whether the given...Ch. 3.2 - In Exercises 13-16, determine whether the given...Ch. 3.2 - 17. Prove Theorem 3.2(a) -(d).Ch. 3.2 - Prove Theorem 3.2 (e) (h).Ch. 3.2 - Prove Theorem 3.3(c).Ch. 3.2 - Prove Theorem 3.3(d).Ch. 3.2 - Prove the half of Theorem 3.3 (e) that was not...Ch. 3.2 - 22. Prove that, for square matrices A and B, AB =...Ch. 3.2 - In Exercises 23-25, if , find conditions on a, b,...Ch. 3.2 - In Exercises 23-25, if B=[abcd], find conditions...Ch. 3.2 - In Exercises 23-25, B=[abcd], find conditions on...Ch. 3.2 - 26. Find conditions on a, b, c, and d such that ...Ch. 3.2 - 27. Find conditions on a, b, c, and d such that ...Ch. 3.2 - Prove that if AB and BA are both defined, then AB...Ch. 3.2 - A square matrix is called upper triangular if all...Ch. 3.2 - 33. Using induction, prove that for all
.
Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 5-8, write B as a linear combination...Ch. 3.3 - Prob. 6EQCh. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 1-10, find the inverse of the given...Ch. 3.3 - In Exercises 11 and 12, solve the given system...Ch. 3.3 - In Exercises 11 and 12, solve the given system...Ch. 3.3 - Let A=[1226],b1=[35],b2=[12],andb3=[20]. Find A-1...Ch. 3.3 - In Exercises 20-23, solve the given matrix...Ch. 3.3 - In Exercises 20-23, solve the given matrix...Ch. 3.3 - In Exercises 20-23, solve the given matrix...Ch. 3.3 - In Exercises 20-23, solve the given matrix...Ch. 3.3 - In Exercises let
In each case, find an...Ch. 3.3 - Prob. 25EQCh. 3.3 - Prob. 26EQCh. 3.3 - Prob. 27EQCh. 3.3 - Prob. 28EQCh. 3.3 - Prob. 29EQCh. 3.3 - Prob. 30EQCh. 3.3 - Prob. 31EQCh. 3.3 - Prob. 32EQCh. 3.3 - In Exercises 31-38, find the inverse of the given...Ch. 3.3 - In Exercises 31-38, find the inverse of the given...Ch. 3.3 - In Exercises 31-38, find the inverse of the given...Ch. 3.3 - In Exercises 31-38, find the inverse of the given...Ch. 3.3 - Prob. 48EQCh. 3.3 - Prob. 49EQCh. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - Prob. 51EQCh. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - Prob. 54EQCh. 3.3 - Prob. 55EQCh. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - Prob. 60EQCh. 3.3 - Prob. 61EQCh. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.3 - In Exercises 48-63, use the Gauss-Jordan method to...Ch. 3.4 - In Exercises 1 -6, solve the system Ax = b using...Ch. 3.4 - In Exercises 1 6, solve the system Ax = b using...Ch. 3.4 - In Exercises 1 -6, solve the system Ax = b using...Ch. 3.4 - In Exercises 1 -6, solve the system Ax = b using...Ch. 3.4 - In Exercises 1-6, solve the system Ax = b using...Ch. 3.4 - Prob. 6EQCh. 3.4 - In Exercises 7-12, find an LU factorization of the...Ch. 3.4 - In Exercises 7-12,find an LU factorization of the...Ch. 3.4 - In Exercises 7-12, find an LU factorization of the...Ch. 3.4 - In Exercises 7-12,find an LU factorization of the...Ch. 3.4 - In Exercises 7-12,find an LU factorization of the...Ch. 3.4 - Prob. 12EQCh. 3.4 - Generalize the definition of LU factorization to...Ch. 3.4 - Prob. 14EQCh. 3.5 - In Exercises 1-4, let S be the collection of...Ch. 3.5 - In Exercises 5-8, let S be the collection of...Ch. 3.5 - In Exercises 11 and 12, determine whether b is in...Ch. 3.5 - If A is the matrix in Exercise 12, is v=[712] in...Ch. 3.6 - 1. Let Ta : ℝ2 → ℝ2 be the matrix transformation...Ch. 3.6 - Let TA: 23 be the matrix transformation...Ch. 3.6 - In Exercises 3-6, prove that the given...Ch. 3.6 - In Exercises 3-6, prove that the given...Ch. 3.6 - Prob. 5EQCh. 3.6 - In Exercises 3-6, prove that the given...Ch. 3.6 - In Exercises 7-10, give a counterexample to show...Ch. 3.6 - In Exercises 7-10, give a counterexample to show...Ch. 3.6 - In Exercises 7-10, give a counterexample to show...Ch. 3.6 - In Exercises 7-10, give a counterexample to show...Ch. 3.6 - In Exercises 11-14, find the standard matrix of...Ch. 3.6 - In Exercises 11-14, find the standard matrix of...Ch. 3.6 - In Exercises 11-14, find the standard matrix of...Ch. 3.6 - In Exercises 11-14, find the standard matrix of...Ch. 3.6 - In Exercises 15-18, show that the given...Ch. 3.6 - In Exercises 15-18, show that the given...Ch. 3.6 - Prob. 17EQCh. 3.6 - Prob. 18EQCh. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises 20-25, find the standard matrix of...Ch. 3.6 - In Exercises30-35, verify Theorem 3.32 by finding...Ch. 3.6 - In Exercises 30-35, verify Theorem 3.32 by finding...Ch. 3.6 - In Exercises 30-35, verify Theorem 3.32 by finding...Ch. 3.6 - In Exercises 30-35, verify Theorem 3.32 by finding...Ch. 3.6 - In Exercises30-35, verify Theorem 3.32 by finding...Ch. 3.6 - Prob. 35EQCh. 3.7 - In Exercises 1-4, let be the transition matrix...Ch. 3.7 - Prob. 2EQCh. 3.7 - In Exercises 1-4, let P=[0.50.30.50.7] be the...Ch. 3.7 - In Exercises 1-4, let be the transition matrix for...Ch. 3.7 - Prob. 5EQCh. 3.7 - Prob. 6EQCh. 3.7 - Prob. 7EQCh. 3.7 - Prob. 8EQCh. 3.7 -
12. Robots have been programmed to traverse the...Ch. 3.7 - Prob. 31EQCh. 3.7 - Prob. 32EQCh. 3.7 - Prob. 33EQCh. 3.7 - Prob. 34EQCh. 3.7 - Prob. 35EQCh. 3.7 - Prob. 36EQCh. 3.7 - Prob. 37EQCh. 3.7 - Prob. 38EQCh. 3.7 - Prob. 39EQCh. 3.7 - Prob. 40EQCh. 3.7 - In Exercises 45-48, determine the adjacency matrix...Ch. 3.7 - Prob. 46EQCh. 3.7 - In Exercises 45-48, determine the adjacency matrix...Ch. 3.7 - In Exercises 45-48, determine the adjacency matrix...Ch. 3.7 - Prob. 53EQCh. 3.7 - In Exercises 53-56, determine the adjacency matrix...Ch. 3.7 - In Exercises 53-56, determine the adjacency matrix...Ch. 3.7 - In Exercises 53-56, determine the adjacency matrix...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Inverse Matrices and Their Properties; Author: Professor Dave Explains;https://www.youtube.com/watch?v=kWorj5BBy9k;License: Standard YouTube License, CC-BY