Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
4th Edition
ISBN: 9781285463247
Author: David Poole
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1RQ

Mark each of the following statements true or false:

  1. For vectors  u , v ,  and  w  in  n ,  if  u + w = v + w  then  u = v .

  2. For vectors  u , v ,  and  w  in  n ,  if  u w = v w ,  then  u = v

  3. For vectors  u , v ,  and  w  in  3 ,  if  u  is orthogonal   to  v ,  and  v  is orthogonal to  w ,  then  u  is orthogonal   to  w  

  4. In 3 ,  if a line  l  is parallel to a plane  P ,  then a di-   rection vector  d  for  l  is parallel to a normal vector   n for  P .

  5. In  3 ,  if a line  l  is perpendicular to a plane  P ,  then   a direction vector  d  for  l  is a parallel to a normal   vector  n  for  P  

  6. 3 ,  if two planes are not parallel, then they must   intersect in a line

  7. In  3 ,  if two lines are not parallel, then they must   intersect in a point

  8. If  v  is a binary vector such that  v v = 0  , then  v = 0  

  9. In 5 ,  if  a b = 0  then either  a = 0  or  b = 0  

  10. ln 6 ,  if  a b = 0  then either  a = 0  or  b = 0

(a)

Expert Solution
Check Mark
To determine

Whether the statement, “if u+w=v+w, then u=v” is true or false.

Answer to Problem 1RQ

The statement is true.

Explanation of Solution

Given that, u+w=v+w

adding (-w) to both the sides, we get

         u+w+-w=v+w+(-w)

or,    u+w-w=v+w-w                        using associative property

or,    u+0=v+0

or,    u=v

Thus, u=v.

Therefore, the given statement is true.

(b)

Expert Solution
Check Mark
To determine

Whether the statement, “if uw=vw, then u=v” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

The given statement is false as the below example disproves the given statement.

Consider the vectors  u=1,1,1,   v=1,0,1  and w=(1,0,0).

uw=1,1,11,0,0=11+10+10=1

vw=1,0,11,0,0=11+00+10=1

Thus, uw=vw   but  uv.

Therefore, the given statement is false.

(c)

Expert Solution
Check Mark
To determine

Whether the statement, “if u is orthogonal to v, and v is orthogonal to w, then u is 

orthogonal to w ” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

The given statement is false as the below example disproves the given statement.

Consider the vectors  u=1,0,0,   v=0,0,1  and w=(2,0,0).

uv=1,0,00,0,1=10+00+01=0

as uv=0, thus u is orthogonal to v.

vw=0,0,12,0,0=02+00+10=0

as vw=0, thus v is orthogonal to w.

uw=1,0,02,0,0=12+00+00=2

as uv=20, thus u is not orthogonal to w.

Therefore, the given statement is false.

(d)

Expert Solution
Check Mark
To determine

Whether the statement, “if a line l is parallel to plane P, then a direction vector d for l is 

parallel to normal vector n for P ” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

The given statement is false as the below statement disproves the given statement.

if a line l is parallel to plane P, then a direction vector d for l is orthogonal to 

normal vector n for P

Mathematically,  dn=0

Therefore, the given statement is false.

(e)

Expert Solution
Check Mark
To determine

Whether the statement, “if a line l is perpendicular to plane P, then a direction vector d 

for l is parallel to normal vector n for P ” is true or false.

Answer to Problem 1RQ

The statement is true.

Explanation of Solution

As the line line l is perpendicular to plane P, therefore the direction vector of 

the line and normal vector of the plane must be parallel to each other.

Therefore, the given statement is true.

(f)

Expert Solution
Check Mark
To determine

Whether the statement, “if two planes are not parallel, then they must intersect 

in a line” is true or false.

Answer to Problem 1RQ

The statement is true.

Explanation of Solution

Two planes always intersect in a line, as long as they are not parallel.

Therefore, the given statement is true.

(g)

Expert Solution
Check Mark
To determine

Whether the statement, “if two lines are not parallel, then they must intersect 

in a point” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

The given statement is false as the below example disproves the given statement.

Skew lines are non-parallel lines that do not intersect each other.

For example,  consider the Z-axis and the line x+y=2,   z=0. 

Both the lines are not parallel to each other, and they do not intersect at any point. 

Therefore, the given statement is false.

(h)

Expert Solution
Check Mark
To determine

Whether the statement, “if v is a binary vector such that vv=0, then v=0” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

The given statement is false as the below example disproves the given statement.

Consider the binary vector v=1,1,0

We know that, for binary vectors  1+1=0

Thus, vv=1,1,01,1,0=11+11+00=1+1=0 

But,  v0 

Therefore, the given statement is false.

(i)

Expert Solution
Check Mark
To determine

Whether the statement, “In Z5, if ab=0 then either a=0 or b=0.” is true or false.

Answer to Problem 1RQ

The statement is true.

Explanation of Solution

We can prove the above statement by proving that Z5 does not have zero divisors.

Here, Z5=0,1,2,3,4.

Now, 01=0, 02=0, 03=0, 04=0, 12=2, 13=3, 14=4,

  23=1, 24=3, 34=2.

Thus, there does not exist zero divisors.

Hence, in Z5, if ab=0 then either a=0 or b=0.

Therefore, the given statement is true.

(j)

Expert Solution
Check Mark
To determine

Whether the statement, “In Z6, if ab=0 then either a=0 or b=0.” is true or false.

Answer to Problem 1RQ

The statement is false.

Explanation of Solution

Counter Example:

Let a=3, b=2Z6.

Now, ab=6=0 in Z6, but neither a0 nor b0.

Therefore, the given statement is false.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. Write a system of linear equations in slope intercept form that has exactly one solution at the point (3, 4), such that one line has positive slope (but not 1) and the other line has negative slope (but not "1). Also write your system of equations with both equations written in standard form with out any fractions 8- 7 8 5 4 3 -2- + -8-7-6-5-4-3-2-1 1 2 3 -1 2 - ° 4 -5 - -8
2. Write a system of linear equations in slope-intercept form has exactly one solution at the point (3, 4), such that both lines have negative slope (but neither one has slope of 1). Also write your system of equations with both equations written in standard form without any fractions. B 0 5 4 3 -2 1 -8-7-6-5-4-3-2 -1 12 3 -1 2 -3 -5 6 -7 -8
4. Write a system of linear equations in slope-intercept form that has no solution, such that (3, 4), and (3,8) are solutions to the first equation, and (0, 4) is a solution to the second equation. Also write your system of equations with both equations written in standard form with out any fractions B 0 5 4 3 -2 + -8-7-6-5-4-3-2 -1 |- 1 2 3 -1 2 -3 4 -5 6 -7

Chapter 1 Solutions

Linear Algebra: A Modern Introduction

Ch. 1.1 - In Exercises 19 and 20, draw the coordinate axes...Ch. 1.1 - In Exercises 21 and 22, draw the standard...Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - Write out the addition and multiplication tables...Ch. 1.1 - Write out the addition and multiplication tables...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - Prob. 39EQCh. 1.1 - Prob. 40EQCh. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - Prob. 51EQCh. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - Prob. 54EQCh. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.2 - In Exercises 1-6, find . 1. Ch. 1.2 - In Exercises 1-6, find . 2. Ch. 1.2 - In Exercises 1-6, find uv. u=[123],v=[231]Ch. 1.2 - In Exercises 1-6, find uv....Ch. 1.2 - In Exercises 13-16, find the distance...Ch. 1.2 - In Exercises 1-6, find . 6. Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 13-16, find the distance between and...Ch. 1.2 - In Exercises 13-16, find the distance between and...Ch. 1.2 - Prob. 15EQCh. 1.2 - Prob. 16EQCh. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - Prob. 23EQCh. 1.2 - Prob. 24EQCh. 1.2 - Prob. 25EQCh. 1.2 - Prob. 26EQCh. 1.2 - Prob. 27EQCh. 1.2 - Prob. 28EQCh. 1.2 - Prob. 29EQCh. 1.2 - In Exercises 40-45, find the projection of v onto...Ch. 1.2 - In Exercises 40-45, find the projection of vontou....Ch. 1.2 - Prob. 44EQCh. 1.2 - Prob. 45EQCh. 1.2 - In Exercises 48 and 49, find all values of the...Ch. 1.2 - In Exercises 48 and 49, find all values of the...Ch. 1.2 - Describe all vectors v=[xy] that are orthogonal to...Ch. 1.3 - In Exercises 1 and 2, write the equation of the...Ch. 1.3 - In Exercises 1 and 2, write the equation of the...Ch. 1.3 - Prob. 3EQCh. 1.3 - Prob. 4EQCh. 1.3 - Prob. 5EQCh. 1.3 - In Exercises 3-6, write the equation of the line...Ch. 1.3 - Prob. 7EQCh. 1.3 - In Exercises 7 and 8, write the equation of the...Ch. 1.3 - Prob. 9EQCh. 1.3 - In Exercises 9 and 10, write the equation of the...Ch. 1.3 - Prob. 11EQCh. 1.3 - In Exercises 11 and 12, give the vector equation...Ch. 1.3 - In Exercises 13 and 14, give the vector equation...Ch. 1.3 - In Exercises 13 and 14, give the vector equation...Ch. 1.3 - Find parametric equations and an equation in...Ch. 1.3 - Prob. 18EQCh. 1.3 - Prob. 19EQCh. 1.3 - 20. Find the vector form of the equation of the...Ch. 1.3 - Find the vector form of the equation of the line...Ch. 1.3 - Find the vector form of the equation of the line...Ch. 1.3 - Prob. 23EQCh. 1.3 - 24. Find the normal form of the equation of the...Ch. 1.3 - 26. Find the equation of the set of all points...Ch. 1.3 - In Exercises 27 and 28, find the distance from the...Ch. 1.3 - In Exercises 29 and 30, find the distance from the...Ch. 1.3 - Prob. 30EQCh. 1.3 - In Exercises 35 and 36, find the distance between...Ch. 1.3 - Prob. 37EQCh. 1.3 - In Exercises 37 and 38, find the distance between...Ch. 1.3 - In Exercises 43-44, find the acute angle between...Ch. 1.3 - Prob. 44EQCh. 1.4 - A sign hanging outside Joes Diner has a mass of 50...Ch. 1 - Mark each of the following statements true or...Ch. 1 - 2. If , and the vector is drawn with its tail at...Ch. 1 - 3. If , and , solve for x. Ch. 1 - Prob. 5RQCh. 1 - 6. Find the projection of . Ch. 1 - 7. Find a unit vector in the xy-plane that is...Ch. 1 - 8. Find the general equation of the plane through...Ch. 1 - Find the general equation of the plane through the...Ch. 1 - 10. Find the general equation of the plane through...Ch. 1 - 12. Find the midpoint of the line segment...Ch. 1 - Prob. 13RQCh. 1 - 14. Find the distance from the point to the plane...Ch. 1 - Find the distance from the point (3,2,5) to the...Ch. 1 - Prob. 16RQCh. 1 - Prob. 17RQCh. 1 - 18. If possible, solve . Ch. 1 - Prob. 19RQ
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY