
Elementary Statistics
12th Edition
ISBN: 9780321836960
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 45BB
Why Divide by n − 1? Let a population consist of the values 2 min, 3 min, 8 min. (These are departure delay times taken from American Airlines flights from New York’s JFK airport to Los Angeles. See Data Set 15 in Appendix B.) Assume that samples of two values are randomly selected with replacement from this population. (That is, a selected value is replaced before the second selection is made.)
- a. Find the variance σ2 of the population {2 min, 3 min, 8 min}.
- b. After listing the nine different possible samples of two values selected with replacement, find the sample variance s2 (which includes division by n − 1) for each of them; then find the
mean of the nine sample variances s2. - c. For each of the nine different possible samples of two values selected with replacement, find the variance by treating each sample as if it is a population (using the formula for population variance, which includes division by n), then find the mean of those nine population variances.
- d. Which approach results in values that are better estimates of σ2: part (b) or part (c)? Why? When computing variances of samples, should you use division by n or n − 1?
- e. The preceding parts show that s2 is an unbiased estimator of σ2. Is s an unbiased estimator of σ? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Several markets (Japan, Switzerland) introduced negative interest rates on their money market.
In this problem, we will consider an annual interest rate r < 0. We consider a stock modeled
by an N-period CRR model where each period is 1 year (At = 1) and the up and down factors
are u and d.
(a) We consider an American put option with strike price K and expiration T. Prove that if
<0, the optimal strategy is to wait until expiration T to exercise.
We consider an N-period CRR model where each period is 1 year (At = 1), the up factor is
u = 0.1, the down factor is d = e−0.3 and r = 0. We remind you that in the CRR model, the
stock price at time tn is modeled (under P) by
Sta
=
So exp (μtn + σ√AtZn),
where (Zn) is a simple symmetric random walk.
(a) Find the parameters μ and σ for the CRR model described above.
(b) Find P
Ste
So
55/50
€ > 1).
StN
(c) Find lim P
804-N
(d) Determine q. (You can use e- 1 x.)
Ste
(e) Find Q
So
(f) Find lim Q
004-N
StN
So
In this problem, we consider a 3-period stock market model with evolution given in Fig. 1 below.
Each period corresponds to one year. The interest rate is r = 0%.
16
22
28
12
16
12
8
4
2
time
Figure 1: Stock evolution for Problem 1.
(a) A colleague notices that in the model above, a movement up-down leads to the same value
as a movement down-up. He concludes that the model is a CRR model. Is your colleague
correct? (Explain your answer.)
(b) We consider a European put with strike price K = 10 and expiration T = 3 years. Find
the price of this option at time 0. Provide the replicating portfolio for the first period.
(c) In addition to the call above, we also consider a European call with strike price K = 10
and expiration T = 3 years. Which one has the highest price? (It is not necessary to
provide the price of the call.)
(d) We now assume a yearly interest rate r = 25%. We consider a Bermudan put option with
strike price K = 10. It works like a standard put, but you can exercise it…
Chapter 3 Solutions
Elementary Statistics
Ch. 3.2 - Employment Data listed below are results from the...Ch. 3.2 - Average The web site IncomeTaxList.com lists the...Ch. 3.2 - Median In an editorial, the Poughkeepsie Journal...Ch. 3.2 - Prob. 4BSCCh. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - Prob. 8BSCCh. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - Prob. 10BSC
Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - Prob. 14BSCCh. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - Prob. 18BSCCh. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 5-20, find the (a) mean, (b) median,...Ch. 3.2 - In Exercises 21-24, find the mean and median for...Ch. 3.2 - In Exercises 21-24, find the mean and median for...Ch. 3.2 - Prob. 23BSCCh. 3.2 - In Exercises 21-24, find the mean and median for...Ch. 3.2 - Large Data Sots from Appendix B. In Exercises...Ch. 3.2 - Prob. 26BSCCh. 3.2 - Prob. 27BSCCh. 3.2 - Prob. 28BSCCh. 3.2 - Prob. 29BSCCh. 3.2 - In Exercises 29-32, find the mean of the data...Ch. 3.2 - Prob. 31BSCCh. 3.2 - In Exercises 29-32, find the mean of the data...Ch. 3.2 - Degrees of Freedom Carbon monoxide is measured in...Ch. 3.2 - Prob. 34BBCh. 3.2 - Trimmed Mean Because the mean is very sensitive to...Ch. 3.2 - Prob. 36BBCh. 3.2 - Prob. 37BBCh. 3.2 - Quadratic Mean The quadratic mean (or root mean...Ch. 3.2 - Prob. 39BBCh. 3.3 - Comparing Variation Which do you think has less...Ch. 3.3 - Correct Statements? Which of the following...Ch. 3.3 - Variation and Variance In statistics, how do the...Ch. 3.3 - Prob. 4BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 7BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 9BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 11BSCCh. 3.3 - Prob. 12BSCCh. 3.3 - Prob. 13BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 15BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 18BSCCh. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - In Exercises 5-20, find the range, variance, and...Ch. 3.3 - Prob. 21BSCCh. 3.3 - Prob. 22BSCCh. 3.3 - Prob. 23BSCCh. 3.3 - Prob. 24BSCCh. 3.3 - Prob. 25BSCCh. 3.3 - Prob. 26BSCCh. 3.3 - Prob. 27BSCCh. 3.3 - Prob. 28BSCCh. 3.3 - Prob. 29BSCCh. 3.3 - Estimating Standard Deviation with the Range Rule...Ch. 3.3 - Prob. 31BSCCh. 3.3 - Prob. 32BSCCh. 3.3 - Prob. 33BSCCh. 3.3 - Prob. 34BSCCh. 3.3 - Identifying Unusual Values with the Range Rule of...Ch. 3.3 - Prob. 36BSCCh. 3.3 - Prob. 37BSCCh. 3.3 - Finding Standard Deviation from a Frequency...Ch. 3.3 - Prob. 39BSCCh. 3.3 - Finding Standard Deviation from a Frequency...Ch. 3.3 - Prob. 41BSCCh. 3.3 - The Empirical Rule Based on Data Set 3 Body...Ch. 3.3 - Prob. 43BSCCh. 3.3 - Chebyshev's Theorem Based on Data Set 3 in...Ch. 3.3 - Why Divide by n 1? Let a population consist of...Ch. 3.3 - Prob. 46BBCh. 3.4 - z Scores James Madison, the fourth President of...Ch. 3.4 - Prob. 2BSCCh. 3.4 - Prob. 3BSCCh. 3.4 - Prob. 4BSCCh. 3.4 - Prob. 5BSCCh. 3.4 - Prob. 6BSCCh. 3.4 - Prob. 7BSCCh. 3.4 - Prob. 8BSCCh. 3.4 - Prob. 9BSCCh. 3.4 - Prob. 10BSCCh. 3.4 - Usual and Unusual Values.In Exercises 9-12,...Ch. 3.4 - Usual and Unusual Values.In Exercises 9-12,...Ch. 3.4 - Prob. 13BSCCh. 3.4 - Prob. 14BSCCh. 3.4 - Comparing Values.In Exercises 13-16, use z scores...Ch. 3.4 - Prob. 16BSCCh. 3.4 - Percentiles. In Exercises 17-20, use the following...Ch. 3.4 - Prob. 18BSCCh. 3.4 - Prob. 19BSCCh. 3.4 - Prob. 20BSCCh. 3.4 - Prob. 21BSCCh. 3.4 - Prob. 22BSCCh. 3.4 - Prob. 23BSCCh. 3.4 - Prob. 24BSCCh. 3.4 - Prob. 25BSCCh. 3.4 - Prob. 26BSCCh. 3.4 - Prob. 27BSCCh. 3.4 - Prob. 28BSCCh. 3.4 - Boxplots. In Exercises 29-32, use the given data...Ch. 3.4 - Prob. 30BSCCh. 3.4 - Prob. 31BSCCh. 3.4 - Boxplots. In Exercises 29-32, use the given data...Ch. 3.4 - Prob. 33BSCCh. 3.4 - Boxplots from Larger Data Sets In Appendix B. In...Ch. 3.4 - Prob. 35BSCCh. 3.4 - Boxplots from Larger Data Sets In Appendix B. In...Ch. 3.4 - Prob. 37BBCh. 3.4 - Prob. 38BBCh. 3 - Find the mean of these times that American...Ch. 3 - What is the median of the sample values listed in...Ch. 3 - Prob. 3CQQCh. 3 - The standard deviation of the sample values in...Ch. 3 - The taxi-in times for 48 flights that landed in...Ch. 3 - You plan to investigate the variation of taxi-in...Ch. 3 - Consider a sample taken from the population of all...Ch. 3 - Consider a sample taken from the population of all...Ch. 3 - Approximately what percentage of taxi-in times is...Ch. 3 - Prob. 10CQQCh. 3 - Ergonomics When designing an eye-recognition...Ch. 3 - z Score Using the sample data from Exercise 1,...Ch. 3 - Boxplot Using the same standing heights listed in...Ch. 3 - Prob. 4RECh. 3 - Prob. 5RECh. 3 - Aircraft Design Engineers designing overhead bin...Ch. 3 - Prob. 9RECh. 3 - Moan or Median? A statistics class with 40...Ch. 3 - Designing Gloves An engineer is designing a...Ch. 3 - Frequency Distribution Use the hand lengths in...Ch. 3 - Histogram Use the frequency distribution from...Ch. 3 - Stemplot Use the hand lengths from Exercise 1 to...Ch. 3 - Descriptive Statistics Use the hand lengths in...Ch. 3 - Normal Distribution Instead of using the hand...Ch. 3 - Sampling Shortly after the World Trade Center...Ch. 3 - Prob. 8CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- In this problem, we consider a 2-period stock market model with evolution given in Fig. 1 below. Each period corresponds to one year (At = 1). The yearly interest rate is r = 1/3 = 33%. This model is a CRR model. 25 15 9 10 6 4 time Figure 1: Stock evolution for Problem 1. (a) Find the values of up and down factors u and d, and the risk-neutral probability q. (b) We consider a European put with strike price K the price of this option at time 0. == 16 and expiration T = 2 years. Find (c) Provide the number of shares of stock that the replicating portfolio contains at each pos- sible position. (d) You find this option available on the market for $2. What do you do? (Short answer.) (e) We consider an American put with strike price K = 16 and expiration T = 2 years. Find the price of this option at time 0 and describe the optimal exercising strategy. (f) We consider an American call with strike price K ○ = 16 and expiration T = 2 years. Find the price of this option at time 0 and describe…arrow_forward2.2, 13.2-13.3) question: 5 point(s) possible ubmit test The accompanying table contains the data for the amounts (in oz) in cans of a certain soda. The cans are labeled to indicate that the contents are 20 oz of soda. Use the sign test and 0.05 significance level to test the claim that cans of this soda are filled so that the median amount is 20 oz. If the median is not 20 oz, are consumers being cheated? Click the icon to view the data. What are the null and alternative hypotheses? OA. Ho: Medi More Info H₁: Medi OC. Ho: Medi H₁: Medi Volume (in ounces) 20.3 20.1 20.4 Find the test stat 20.1 20.5 20.1 20.1 19.9 20.1 Test statistic = 20.2 20.3 20.3 20.1 20.4 20.5 Find the P-value 19.7 20.2 20.4 20.1 20.2 20.2 P-value= (R 19.9 20.1 20.5 20.4 20.1 20.4 Determine the p 20.1 20.3 20.4 20.2 20.3 20.4 Since the P-valu 19.9 20.2 19.9 Print Done 20 oz 20 oz 20 oz 20 oz ce that the consumers are being cheated.arrow_forwardT Teenage obesity (O), and weekly fast-food meals (F), among some selected Mississippi teenagers are: Name Obesity (lbs) # of Fast-foods per week Josh 185 10 Karl 172 8 Terry 168 9 Kamie Andy 204 154 12 6 (a) Compute the variance of Obesity, s²o, and the variance of fast-food meals, s², of this data. [Must show full work]. (b) Compute the Correlation Coefficient between O and F. [Must show full work]. (c) Find the Coefficient of Determination between O and F. [Must show full work]. (d) Obtain the Regression equation of this data. [Must show full work]. (e) Interpret your answers in (b), (c), and (d). (Full explanations required). Edit View Insert Format Tools Tablearrow_forward
- The average miles per gallon for a sample of 40 cars of model SX last year was 32.1, with a population standard deviation of 3.8. A sample of 40 cars from this year’s model SX has an average of 35.2 mpg, with a population standard deviation of 5.4. Find a 99 percent confidence interval for the difference in average mpg for this car brand (this year’s model minus last year’s).Find a 99 percent confidence interval for the difference in average mpg for last year’s model minus this year’s. What does the negative difference mean?arrow_forwardA special interest group reports a tiny margin of error (plus or minus 0.04 percent) for its online survey based on 50,000 responses. Is the margin of error legitimate? (Assume that the group’s math is correct.)arrow_forwardSuppose that 73 percent of a sample of 1,000 U.S. college students drive a used car as opposed to a new car or no car at all. Find an 80 percent confidence interval for the percentage of all U.S. college students who drive a used car.What sample size would cut this margin of error in half?arrow_forward
- You want to compare the average number of tines on the antlers of male deer in two nearby metro parks. A sample of 30 deer from the first park shows an average of 5 tines with a population standard deviation of 3. A sample of 35 deer from the second park shows an average of 6 tines with a population standard deviation of 3.2. Find a 95 percent confidence interval for the difference in average number of tines for all male deer in the two metro parks (second park minus first park).Do the parks’ deer populations differ in average size of deer antlers?arrow_forwardSuppose that you want to increase the confidence level of a particular confidence interval from 80 percent to 95 percent without changing the width of the confidence interval. Can you do it?arrow_forwardA random sample of 1,117 U.S. college students finds that 729 go home at least once each term. Find a 98 percent confidence interval for the proportion of all U.S. college students who go home at least once each term.arrow_forward
- Suppose that you make two confidence intervals with the same data set — one with a 95 percent confidence level and the other with a 99.7 percent confidence level. Which interval is wider?Is a wide confidence interval a good thing?arrow_forwardIs it true that a 95 percent confidence interval means you’re 95 percent confident that the sample statistic is in the interval?arrow_forwardTines can range from 2 to upwards of 50 or more on a male deer. You want to estimate the average number of tines on the antlers of male deer in a nearby metro park. A sample of 30 deer has an average of 5 tines, with a population standard deviation of 3. Find a 95 percent confidence interval for the average number of tines for all male deer in this metro park.Find a 98 percent confidence interval for the average number of tines for all male deer in this metro park.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License