University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 33.50P
Light is incident normally on the short face of a 30°–60°–90° prism (Fig. P33.50). A drop of liquid is placed on the hypotenuse of the prism. If the index of refraction of the prism is 1.56, find the maximum index that the liquid may have for the light to be totally reflected.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction
for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable
with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air
interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air
is 1.
←cladding
-core
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
A light ray enters a rectangular block of plastic at an angle
Ɵ1 = 45.0˚ and emerges at an angle Ɵ2 = 76.0˚ , as shown in figure P22.57
(a)Determine the index of refraction of the plastic.
(b) If the light ray enters the plastic at a point L=50.0cm from the bottom edge, how long does it take the light ray to travel through the plastic?
Chapter 33 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The height of a certain hill (in feet) is given by , where y is the distance (in miles) north, x the distance e...
Introduction to Electrodynamics
Is there any point on a projectiles trajectory where velocity and acceleration are perpendicular?
Essential University Physics: Volume 1 (3rd Edition)
As Earth orbits the Sun, it also rotates in a counterclockwise direction about its axis as shown in Figure 1. W...
Lecture- Tutorials for Introductory Astronomy
12. A 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients o...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Youre the product safety officer for a company that makes cycling accessories. Youre given a new design for a b...
Essential University Physics (3rd Edition)
5. How does the pressure exerted by a liquid change with depth of the liquid? How does the pressure exerted by ...
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardWhite light is incident from air onto a triangular prism at a 45.0° angle with respect to the normal. It refracts into the prism then back into air as it exits the prism. From there, it enters a thick glass plate. The prism has an index of refraction of 1.49 for red light and 1.52 for violet light. The glass has an index of refraction of 1.61 for red light and 1.64 for violet light. What is the angular separation (dispersion angle) of the two noted colors while in the glass slab? Take nair = 1.00 for all wavelengths. white light 45 air prism 45 90 air 60 degrees violet light Glass red light angular separationarrow_forwardFigure P22.59 shows the path of a beam of light through severallayers with different indices of refraction. (a) If Θ1 = 30.0°,what is the angle Θ2 of the emerging beam? (b) What must the incident angle Θ1 be to have total internal reflection at thesurface between the medium with n = 1.20 and the mediumwith n = 1.00?arrow_forward
- The bottom of a glass bottom boat allows tourists to see the coral reefs in Australia. The indices of refraction are as follows: air(n=1), glass(n=1.55), water(n=1.330).If a light ray coming from above hits the glass at an angle of 60.0deg to the normal, what is the refracted angle (deg) inside the water?arrow_forwardA light ray is incident at an angle x on the top surface of a block of plastic with n = 1.49. Find the maximum value of x for which the refracted ray undergoes total internal reflection at point P at the left vertical interface of the block. Assume the block is immersed in water (nWATER = 1.33 ).arrow_forwardThe index of refraction of the core of a piece of fiber optic cable is 1.72. If the index of the surrounding cladding is 1.41, what is the critical angle for total internal reflection for a light ray in the core incident on the core-cladding interface? a 55.1° b 44.0⁰ c 49.6° d 60.6°arrow_forward
- A ray of sunlight is passing from diamond into crown glass; the angle of incidence is 30.00°. The indices of refraction for the blue and red components of the ray are: blue (ndiamond = 2.444, ncrown glass = 1.531), and red (ndiamond = 2.410, ncrown glass = 1.520). Determine the angle between the refracted blue and red rays in the crown glass. %3D Additional Materials eBook 398 1,375 APR 21 étv MacBook Air 80 esc F5 F6 F7 F1 F2 F3 F4 #3 %$4 % & 1 2 3. 4 Y くOarrow_forwardA diamond in air is illuminated with white light. On one particular facet, the angle of incidence is 32.50°. Inside the diamond, red light (λ = 660.0 nm in vacuum) is refracted at 10.48° with respect to the normal; blue light (λ = 470.0 nm in vacuum) is refracted at 10.33°. What is the index of refraction for red light in diamond? What is the index of refraction for blue light in diamond? What is the ratio of the speed of red light to the speed of blue light in diamond?arrow_forwardA flat piece of glass covers the top of a vertical cylinder that is completely filled with water. If a ray of light traveling in the glass is incident on the interface with the water at an angle of θa = 36.2°, the ray refracted into the water makes an angle of 49.8o with the normal to the interface. What is the smallest value of the incident angle ua for which none of the ray refracts into the water?arrow_forward
- An optical cable in-air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable with an incident angle a = 58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air interface. The angle between the exit ray and the cable wall is 0. What is the angle e? The index of refraction of air is 1. 1 cladding core degreearrow_forwardSapphire has an index of refraction of 1.80. What is its critical angle of incidence when in air? 1.16° 55.6° 33.7° 65.2° 87.4° Light travels from leaded glass into water with an angle of refraction of 35.4 °. The angle of incidence is 26.9o. If the refractive index of water is 1.33, what is the refractive index of the leaded glass? 1.04 1.50 1.70 1.90 1.33 Correct answers are noted can you help expalin why?arrow_forwardThe index of refraction for violet light in silica flint glass is 1.66, and that for red light is 1.62. A) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 51.0°? B) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 90°?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY