University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 33.40P
To determine
The index of refraction of the prism for each of the two wavelengths.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
An optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction
for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable
with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air
interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air
is 1.
←cladding
-core
A ray of light strikes a flat block of glass at an incidence angle of
?1 = 38.6°.
The glass is 2.00 cm thick and has an index of refraction that equals
ng = 1.52.
a.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)?
b.) At what speed (in m/s) does the light travel within the glass?
c.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?
Chapter 33 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forward
- Figure P22.59 shows the path of a beam of light through severallayers with different indices of refraction. (a) If Θ1 = 30.0°,what is the angle Θ2 of the emerging beam? (b) What must the incident angle Θ1 be to have total internal reflection at thesurface between the medium with n = 1.20 and the mediumwith n = 1.00?arrow_forwardA light ray propagates in Material 1 with index of refraction n = 1.15, strikes an interface, then passes into Material 2 with index of refraction n = 1.31. The angle of incidence at the interface is 0 = 23.5°. Determine the angle of refraction 0. Material 1 Material 2 02 =arrow_forwardA transparent cylinder of radius R = 2.00 m has a mirrored surface on its right half, as shown in Figure P22.55 (page 800). A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and the exiting light ray are parallel, and d = 2.00 m. Determine the index of refraction of the material.arrow_forward
- A 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.arrow_forwardA light ray enters a rectangular block of plastic at an angle Ɵ1 = 45.0˚ and emerges at an angle Ɵ2 = 76.0˚ , as shown in figure P22.57 (a)Determine the index of refraction of the plastic. (b) If the light ray enters the plastic at a point L=50.0cm from the bottom edge, how long does it take the light ray to travel through the plastic?arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) 0.27° 0.33° 0.36° 0.46° 0.54°arrow_forward
- Sapphire has an index of refraction of 1.80. What is its critical angle of incidence when in air? 1.16° 55.6° 33.7° 65.2° 87.4° Light travels from leaded glass into water with an angle of refraction of 35.4 °. The angle of incidence is 26.9o. If the refractive index of water is 1.33, what is the refractive index of the leaded glass? 1.04 1.50 1.70 1.90 1.33 Correct answers are noted can you help expalin why?arrow_forwardThe drawing shows a ray of light traveling through three materials whose surfaces are parallel to each other. The refracted rays (but not the reflected rays) are shown as the light passes through each material. A ray of light strikes the a-b interface at a 50.0° angle of incidence. The index of refraction of material a is na = 1.20. The angles of refraction in materials b and care, respectively, 40.4° and 58.2°. Find the indices of refraction in these two media. nb = Number nc = Number i i Units Units Q b > > сarrow_forwardPlease Asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning