University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 33.23E
A narrow beam of white light strikes one face of a slab of silicate flint glass. The light is traveling parallel to the two adjoining faces,as shown in Fig. E33.23. For the transmitted light inside the glass, through what angle Δθ is the portion of the visible spectrum between 400 nm and 700 nm dispersed? (Consult the graph in Fig. 33.17.)
Figure E33.23
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light of intensity Io is polarized vertically and is incident on an analyzer rotated at an angle θ from the vertical. Find the angle θ if the transmitted light has intensity of I = Io/2.a. 0b. π/4c. π/2d. Cannot be determined
A beam of polarized light of intensity I0 passes through a sheet of ideal polarizing material. The polarization axis of the beam and the transmission axis of the sheet differ by 60°. What is the intensity of the emerging light?
Answer choices
-0.87
-0.75
-0.50
-0.25
An advanced computer sends information to its various parts via infrared light pulses traveling through silicon fibers (n = 3.50). To acquire data from memory, the central processing unit sends a light-pulse request to the memory unit. The memory unit processes the request, then sends a data pulse back to the central processing unit. The memory unit takes 0.50 ns toprocess a request. If the information has to be obtained from memory in 2.00 ns, what is the maximum distance the memory unit can be from the central processing unit?
Chapter 33 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
The buoyant force on the block and mass of the water displaced by the block.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
If a charged particle moves in a straight line, can you conclude that there is no magnetic field present?
University Physics Volume 2
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardPlease Asaparrow_forward10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?arrow_forward
- 10. Three polarizing disks have planes that are parallel and centered on a common axis. The direction of the transmission axis (dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with intensity S 780 W/m². Calculate the transmitted intensity if 0₁23.0°, 0 = 32.0°, and 0,= 43.0°. x 28.9 W/m²arrow_forwardTwo rectangular optically flat plates (n=1.52) are in contact along one end and are separated along the other end by a 2.00μm-thick spacer (Fig. P24.24). The top plate is illuminated by monochromatic light of wavelength 546.1 nm. Calculate the number of dark parallel bands crossing the top plate (including the dark band at zero thickness along the edge of contact between the plates).arrow_forwardK A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of = to find the angle of refraction, V2 sin 0₁ V₁ y incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law, sin 02 where the index of refraction is 1.66. ... The angle of refraction is approximately degrees. (Type an integer or decimal rounded to two decimal places as needed.)arrow_forward
- The indices of refraction of quartz for right-handed and left-handed circularly polarised light of wave length 7620 Å are 1.53914 and 1.53920, respectively. Calculate the rotation of the plane of polarisation of the light in degrees produced by a plate 0.5 mm thick.arrow_forwardUnpolarized light passes through two ideal polarizers. The axis of the first is vertical, and the axis of the second is at 70° to the vertical. What fraction of the incident light is transmitted through both polarizers? 0.342 0.171 0.0585 0.117arrow_forwardQ: A material has an index-of-refraction that decreases with increasing frequency. EM waves at f = 1000 Hz and 1500 Hz are incident from air on the material at same incidence angle. Which frequency, if either, bends more from the path of its incident ray? Q: A light ray with 10 W/m2 intensity moving in the x-direction is polarized at 45° to both the y- and z-axes. It passes through a polarizer whose transmission axis is aligned with the y-axis. What is the intensity of the transmitted light?arrow_forward
- White light is sent through an interface of a 100% (w/v) glycerol solution (nį = 1.474) and a 20% (w/v) sucrose solution (n2 = 1.364) at an angle of O1. Incident ray Reflected ray If Oj = 34°, determine the angle of O2 in degrees. Refractive index = n, O2 Refractive index = n, If O, = 0°, determine the angle of O2 in degrees. Refracted ray O2 = IIarrow_forwardTwo polarizers, P1 and P2, are oriented perpen- +z dicular with each other as shown in the figure. A third polarizer P3 oriented 45°relative to the +z-axis, is inserted between P1 and P2. If an unpolarized light beam of intensity I, is incident on P1. What is the intensity of light after it passes through the three polarizers? 000 +x А. 0 C. D. D.arrow_forwardThe index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660. A beam of white light in this glass strikes the glass-air interface at a 28.30° angle of incidence and refracts out into the air. What is the angular separation A between the red and violet components of the spectrum that emerges from the glass? A0=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY