Consider the voltage phasor in Figure 32.4, shown at three instants of time. (i) Choose the part of the figure, (a), (b), or (c), that represents the instant of time at which the instantaneous value of the voltage has the largest magnitude. (ii) Choose the part of the figure that represents the instant of time at which the instantaneous value of the voltage has the smallest magnitude.
(i)
Answer to Problem 33.1QQ
Explanation of Solution
A phasor diagram is arrow whose length represents the amplitude of an AC voltage or current. The phasor diagram rotates counterclockwise about the origin with angular frequency of the AC quantity. The maximum rotation of the length of the arrow with angular frequency represents the largest magnitude of voltage. Hence, the Figure (c) represents the largest magnitude of voltage at instant of time
Conclusion:
Therefore, the Figure (c) represents the largest magnitude of voltage at instant of time because of maximum rotation of arrow in counterclockwise with maximum frequency.
(ii)
Answer to Problem 33.1QQ
Explanation of Solution
A phasor diagram is arrow whose length represents the amplitude of an AC voltage or current. The phasor diagram rotates counterclockwise about the origin with angular frequency of the AC quantity. The minimum rotation of the length of the arrow with minimum angular frequency represents the minimum voltage. Hence, the Figure(b) represents the minimum voltage at instant of time because of minimum rotation of the length of the arrow with minimum angular frequency represents.
Thus, the Figure (b) represents the smallest magnitude of voltage at instant of time.
Conclusion:
Therefore, the Figure (b) represents the smallest magnitude of voltage at instant of time because of minimum rotation of arrow in counterclockwise with minimum frequency.
Want to see more full solutions like this?
Chapter 33 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 40.0 g and electrical resistance 0.300 Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 9.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00 V .The rod is placed in a vertical magnetic field. The rod begins to slide when the field reaches the value B = 0.131 T . Assume that the rod has a slightly flattened bottom so that it slides instead of rolling. Use 9.80 m/s^2 for the magnitude of the acceleration due to gravity. A) Find μ_s, the coefficient of static friction between the rod and the rails. Give the answer numericallyarrow_forwardQ (t) = 3e-0.7t sin() + 0.01 sin(4t) - 0.02 cos(4t) The function Q defined above models the electric charge, measured in coulombs, inside a lightbulb t seconds after it is turned on. Which of the following presents the method for finding the instantaneous rate of change of the lightbulb's electric charge, in coulombs per second, at time t = 4? Q" (4) = -0.213 A B C D Q'(4) = -0.171 Q(4) Q (0) 4-0 = 0.053 Q (4) = 0.194arrow_forwardAt position x=0 the voltage is 100V. At x=0.5m the voltage is 0V. What is the direction and strength of the average x-component of the electric field in that region?arrow_forward
- 7. a C R₂ Given E=12V, R₁-1002, R₂ = 1502 and C=1uF. a) The switch S has been on position a for a long period of time. Find the charge of the capacitor. b) Find the current through the ammeter 9.50 µs after S is thrown from position a to position b. c) After S is thrown from a to b, at what time, in us, does the charge on C become equal to 2.00 uCarrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. AV battery = 30 V, C = 3.0 F, and R = 2.0 2. At sometime after the switch is closed, the current in the circuit is measured to be 9.3 A. What is the charge on the capacitor at this time, in Coulomb? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forward
- #1. The capacitor in the figure is initially uncharged and the switch is at position c and not connected to either side of the circuit. At t = 0, the switch is flipped to position a for 20 ms,thenflipped back to position c for 10 ms, then flipped to position b for 20 ms, and finally flipped toposition c again. a) Using the Kirchhoff Voltage Law, write the differential equationsthat describethe circuit between t = 0 –20 ms andt = 30 –50 ms. b) Solve two differential equations you find ina) with appropriate initial condition to find the current through and the voltage across the capacitor as functions of time. c) Sketch the graphs of the current and voltage you find in b) from t = 0 to 60 ms. #2. Now the 40 uF capacitor in the circuit in #1 is replaced with a 0.4 H inductor. The inductor in this circuit is initially uncharged and the switch is at position c and not connected to either side of the circuit. At t = 0, the switch is flipped to position a for 20 ms, then flipped back to…arrow_forward4arrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rtorso, allowing the heart's normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 7.00 µF and e m f = 1270 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 795 V in 1.60 s. Ω (b) If the capacitor is then discharged across the patient's torso with Rtorso = 1230 Ω, calculate the voltage (in V) across the capacitor after 5.50 ms. Varrow_forward
- Questions are in the attachmentsarrow_forwardA 15000-ohm resistor and a 6-milliHenry inductor are connected in parallel. At = 0, this parallel combination is connected across a 2mA current source. Find the current flowing through the resistor at t = 1 microsecond after connecting the current source. Note: The shortcut formula we are using is for the current flowing through the inductor, not through the resistor. 1.836 milliAmpere 2 milliAmpere 0.164 milliAmpere O Amperearrow_forwardChapter 31, Problem 017 GO In the figure, R = 14.0 2, C = 6.87 uf, and L - 51.0 mH, and the ideal battery has emf = 31.0 V. The switch is kept in position a for a long time and then thrown to position b. What are the (a) frequency and (b) current amplitude of the resulting oscillations? (a) Number Units (b) Number Unitsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning