DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
8th Edition
ISBN: 9781260521337
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.3, Problem 24E
- An algorithm is calledoptimalfor the solution of a problem with respect to a specified operation if there is no algorithm for solving this problem using fewer operations.
- Show that Algorithm 1 in Section 3.1 is an optimal algorithm respect to the number of comparisons of integers. [Note: Comparisons used for bookkeeping in the loop are not of concern here.]
- Is the linear search algorithm optimal with respect to the number of comparisons of integers (not including comparisons used for bookkeeping in the loop)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain the step by step procedure of Dijktra’s algorithm to find the shortest path between any two vertices?
What is the nearest neighbor algorithm
An algorithm is called optimal for the solution of a problem with respect to a specified operation if there is no algorithm for solving this problem using fewer operations.
(THE FIRST ATTACHMENT IS FROM SECTION 3.1)
Please answer parts a & b.
Chapter 3 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
Ch. 3.1 - List all the steps used by Algorithm 1 to find the...Ch. 3.1 - Determine which characteristics of an algorithm...Ch. 3.1 - Devise an algorithm that finds the sum of all the...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Apalindromeis a string that reads the same forward...Ch. 3.1 - Devise an algorithm to computexn, wherexis a real...
Ch. 3.1 - Describe an algorithm that interchanges the values...Ch. 3.1 - cribe an algorithm that uses only assignment...Ch. 3.1 - List all the steps used to search for 9 in the...Ch. 3.1 - List all the steps used to search for 7 in the...Ch. 3.1 - cribe an algorithm that inserts an integerxin the...Ch. 3.1 - Describe an algorithm for finding the smallest...Ch. 3.1 - Describe an algorithm that locates the first...Ch. 3.1 - Describe an algorithm that locates the last...Ch. 3.1 - Describe an algorithm that produces the maximum,...Ch. 3.1 - Describe an algorithm for finding both the largest...Ch. 3.1 - Describe an algorithm that puts the first three...Ch. 3.1 - Prob. 22ECh. 3.1 - Prob. 23ECh. 3.1 - Describe an algorithm that determines whether a...Ch. 3.1 - Describe an algorithm that will count the number...Ch. 3.1 - nge Algorithm 3 so that the binary search...Ch. 3.1 - Theternary search algorithmlocates an element in a...Ch. 3.1 - Specify the steps of an algorithm that locates an...Ch. 3.1 - Devise an algorithm that finds a mode in a list of...Ch. 3.1 - Devise an algorithm that finds all modes. (Recall...Ch. 3.1 - Two strings areanagramsif each can be formed from...Ch. 3.1 - ennreal numbersx1,x2,...,xn , find the two that...Ch. 3.1 - Devise an algorithm that finds the first term of a...Ch. 3.1 - Prob. 34ECh. 3.1 - Prob. 35ECh. 3.1 - Use the bubble sort to sort 6, 2, 3, 1, 5, 4,...Ch. 3.1 - Use the bubble sort to sort 3, 1, 5, 7, 4, showing...Ch. 3.1 - Use the bubble sort to sortd,f,k,m,a,b, showing...Ch. 3.1 - Adapt the bubble sort algorithm so that it stops...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Sort these lists using the selection sort....Ch. 3.1 - Write the selection sort algorithm in pseudocode.Ch. 3.1 - Describe an algorithm based on the linear search...Ch. 3.1 - Describe an algorithm based on the binary search...Ch. 3.1 - How many comparisons does the insertion sort use...Ch. 3.1 - How many comparisons does the insertion sort use...Ch. 3.1 - Show all the steps used by the binary insertion...Ch. 3.1 - Compare the number of comparisons used by the...Ch. 3.1 - Prob. 51ECh. 3.1 - Devise a variation of the insertion sort that uses...Ch. 3.1 - Prob. 53ECh. 3.1 - List all the steps the naive string matcher uses...Ch. 3.1 - List all the steps the naive string matcher uses...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Prob. 59ECh. 3.1 - Show that if there were a coin worth 12 cents, the...Ch. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Devise a greedy algorithm that determines the...Ch. 3.1 - Suppose we have three menm1,m2, andm3and three...Ch. 3.1 - Write the deferred acceptance algorithm in...Ch. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prove that the Boyer-Moore majority vote algorithm...Ch. 3.1 - Show that the problem of determining whether a...Ch. 3.1 - Prob. 71ECh. 3.1 - Show that the problem of deciding whether a...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Prob. 11ECh. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - ermine whetherx3isO(g(x))for each of these...Ch. 3.2 - Explain what it means for a function to be 0(1)Ch. 3.2 - w that iff(x)isO(x)thenf(x)isO(x2).Ch. 3.2 - Suppose thatf(x),g(x), andh(x)are functions such...Ch. 3.2 - kbe a positive integer. Show...Ch. 3.2 - Prob. 19ECh. 3.2 - To simplify:(3a5)3 27a15 Given information:(3a5)3....Ch. 3.2 - ange the functionsn, 1000 logn,nlogn,2n!,2n,3n,...Ch. 3.2 - Arrange the...Ch. 3.2 - Suppose that you have two different algorithms for...Ch. 3.2 - Suppose that you have two different algorithms for...Ch. 3.2 - Give as good a big-Oestimate as possible for each...Ch. 3.2 - e a big-Oestimate for each of these functions. For...Ch. 3.2 - Give a big-Oestimate for each of these functions....Ch. 3.2 - each function in Exercise 1, determine whether...Ch. 3.2 - Prob. 29ECh. 3.2 - Show that each of these pairs of functions are of...Ch. 3.2 - Prob. 31ECh. 3.2 - w thatf(x)andg(x)are functions from the set of...Ch. 3.2 - Prob. 33ECh. 3.2 - Show that3x2+x+1is(3x2)by directly finding the...Ch. 3.2 - Prob. 35ECh. 3.2 - lain what it means for a function to be(1).Ch. 3.2 - Prob. 37ECh. 3.2 - Give a big-Oestimate of the product of the...Ch. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.2 - pose thatf(x)isO(g(x)). Does it follow...Ch. 3.2 - Prob. 43ECh. 3.2 - pose thatf(x),g(x), andh(x)are functions such...Ch. 3.2 - Prob. 45ECh. 3.2 - Prob. 46ECh. 3.2 - Prob. 47ECh. 3.2 - ress the relationshipf(x)is(g(x))using a picture....Ch. 3.2 - Prob. 49ECh. 3.2 - w that iff(x)=anxn+an1xn1++a1x+a0,...Ch. 3.2 - Prob. 51ECh. 3.2 - Prob. 52ECh. 3.2 - Prob. 53ECh. 3.2 - w thatx5y3+x4y4+x3y5is(x3y3).Ch. 3.2 - w thatxyisO(xy).Ch. 3.2 - w thatxyis(xy).Ch. 3.2 - Prob. 57ECh. 3.2 - Prob. 58ECh. 3.2 - Prob. 59ECh. 3.2 - Prob. 60ECh. 3.2 - Prob. 61ECh. 3.2 - (Requires calculus) Prove or disprove that (2n)!...Ch. 3.2 - Prob. 63ECh. 3.2 - Prob. 64ECh. 3.2 - Prob. 65ECh. 3.2 - Prob. 66ECh. 3.2 - Prob. 67ECh. 3.2 - Prob. 68ECh. 3.2 - Prob. 69ECh. 3.2 - Prob. 70ECh. 3.2 - Prob. 71ECh. 3.2 - Prob. 72ECh. 3.2 - Show thatnlognisO(logn!).Ch. 3.2 - Prob. 74ECh. 3.2 - Prob. 75ECh. 3.2 - Prob. 76ECh. 3.2 - (Requires calculus) For each of these pairs of...Ch. 3.3 - Give a big-Oestimate for the number of operations...Ch. 3.3 - Give a big-Oestimate for the number additions used...Ch. 3.3 - Give a big-Oestimate for the number of operations,...Ch. 3.3 - Give a big-Oestimate for the number of operations,...Ch. 3.3 - Prob. 5ECh. 3.3 - Use pseudocode to describe the algorithm that puts...Ch. 3.3 - Suppose that an element is known to be among the...Ch. 3.3 - Prob. 8ECh. 3.3 - Give a big-Oestimate for the number of comparisons...Ch. 3.3 - Show that this algorithm determines the number of...Ch. 3.3 - pose we havensubsetsS1,S2, ...,Snof the set {1, 2,...Ch. 3.3 - Consider the following algorithm, which takes as...Ch. 3.3 - The conventional algorithm for evaluating a...Ch. 3.3 - re is a more efficient algorithm (in terms of the...Ch. 3.3 - t is the largestnfor which one can solve within...Ch. 3.3 - What is the largestnfor which one can solve within...Ch. 3.3 - What is the largestnfor which one can solve within...Ch. 3.3 - How much time does an algorithm take to solve a...Ch. 3.3 - Prob. 19ECh. 3.3 - What is the effect in the time required to solve a...Ch. 3.3 - Prob. 21ECh. 3.3 - Determine the least number of comparisons, or...Ch. 3.3 - Analyze the average-case performance of the linear...Ch. 3.3 - An algorithm is calledoptimalfor the solution of a...Ch. 3.3 - Describe the worst-case time complexity, measured...Ch. 3.3 - Prob. 26ECh. 3.3 - Prob. 27ECh. 3.3 - Prob. 28ECh. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Determine a big-O estimate for the worst-case...Ch. 3.3 - Determine the number of character comparisons used...Ch. 3.3 - Determine a big-Oestimate of the number of...Ch. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Show that the greedy algorithm for making change...Ch. 3.3 - rcises 41 and 42 deal with the problem of...Ch. 3.3 - rcises 41 and 42 deal with the problem of...Ch. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3 - Define the termalgorithm. What are the different...Ch. 3 - Describe, using English, an algorithm for finding...Ch. 3 - Prob. 3RQCh. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Define what the worst-case time complexity,...Ch. 3 - Prob. 7RQCh. 3 - Describe the bubble sort algorithm. Use the bubble...Ch. 3 - Describe the insertion sort algorithm. Use the...Ch. 3 - Explain the concept of a greedy algorithm. Provide...Ch. 3 - Prob. 11RQCh. 3 - Describe an algorithm for locating the last...Ch. 3 - Prob. 2SECh. 3 - Give an algorithm to determine whether a bit...Ch. 3 - Suppose that a list contains integers that are in...Ch. 3 - Prob. 5SECh. 3 - Prob. 6SECh. 3 - Prob. 7SECh. 3 - Prob. 8SECh. 3 - Prob. 9SECh. 3 - Prob. 10SECh. 3 - Show the steps used by the shaker sort to sort the...Ch. 3 - Express the shaker sort in pseudocode.Ch. 3 - Prob. 13SECh. 3 - Prob. 14SECh. 3 - Prob. 15SECh. 3 - w that8x3+12x+100logxisO(x3).Ch. 3 - Prob. 17SECh. 3 - Prob. 18SECh. 3 - Prob. 19SECh. 3 - w thatnnis notO(n!).Ch. 3 - Prob. 21SECh. 3 - Prob. 22SECh. 3 - Prob. 23SECh. 3 - Prob. 24SECh. 3 - Arrange the...Ch. 3 - Prob. 26SECh. 3 - Prob. 27SECh. 3 - Show that if the denominations of coins arec0,c1,...Ch. 3 - Prob. 29SECh. 3 - Prob. 30SECh. 3 - Prob. 31SECh. 3 - Show that the deferred acceptance algorithm given...Ch. 3 - Prob. 33SECh. 3 - Show that when woman do the proposing in the...Ch. 3 - Prob. 35SECh. 3 - Prob. 36SECh. 3 - Prob. 37SECh. 3 - Prob. 38SECh. 3 - Prob. 39SECh. 3 - Prob. 40SECh. 3 - Prob. 41SECh. 3 - Exercises 4246 we will study the problem of load...Ch. 3 - Prob. 43SECh. 3 - Prob. 44SECh. 3 - Prob. 45SECh. 3 - Prove that the algorithm from Exercise 44 is a...Ch. 3 - Prob. 1CPCh. 3 - Prob. 2CPCh. 3 - Prob. 3CPCh. 3 - Prob. 4CPCh. 3 - Prob. 5CPCh. 3 - Prob. 6CPCh. 3 - Prob. 7CPCh. 3 - Given an integern, use the cashier’s algorithm to...Ch. 3 - Prob. 9CPCh. 3 - Prob. 10CPCh. 3 - Prob. 11CPCh. 3 - Prob. 1CAECh. 3 - Prob. 2CAECh. 3 - Using a generator of random orderings of the...Ch. 3 - Prob. 4CAECh. 3 - Write a program that animates the progress of all...Ch. 3 - Examine the history of the wordalgorithmand...Ch. 3 - Prob. 2WPCh. 3 - Explain how sorting algorithms can be classified...Ch. 3 - Prob. 4WPCh. 3 - Prob. 5WPCh. 3 - Prob. 6WPCh. 3 - Describe the historic trends in how quickly...Ch. 3 - Develop a detailed list of algorithmic paradigms...Ch. 3 - Explain what the Turing Award is and describe the...Ch. 3 - Prob. 10WPCh. 3 - Prob. 11WPCh. 3 - Describe six different NP-complete problems.Ch. 3 - Prob. 13WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Vw QUESTION 10 9. Please use the graph below to show that Dijkstra's algorithm cannot be used if the graph has negative edges. Source = A 3. 1. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Paragraph 10pt Arial 田国 出田回 BIUSarrow_forward4. [Ocean Weather] Information about ocean weather can be extracted from radar returns with the aid of a special algorithm. A study is conducted to estimate the difference in wind speed as measured on the ground and via the Seasat satellite. To do so, wind speeds (miles per hour) are measured on the ground and via the Seasat satellite simultaneously at 12 special times. The data is shown in the following table. The table also shows the difference between the wind speed on the ground and that via the Seasat satellite at each time, as well as some summary statistics. Difference Time Ground (x) Satellite (y) d= x – y 1 4.46 4.08 0.38 3.99 3.94 0.05 3 3.73 5.00 -1.27 4 3.29 5.20 -1.91 4.82 3.92 0.90 6 6.71 6.21 0.50 7 4.61 5.95 -1.34 8. 3.87 3.07 0.80 3.17 4.76 -1.59 10 4.42 3.25 1.17 11 3.76 4.89 -1.13 12 3.30 4.80 -1.50 d = -0.41 Sd = 1.14 It is claimed that the wind speed measured on the ground is lower than that measured via the Satellite on average. Set up your hypotheses to test this…arrow_forwardApply Dijkstra's Algorithm to find the shortest path from a to z in the following graph.arrow_forward
- Find the shortest path from vertex ‘a’ to ‘z’ by Dijkstra’s algorithm for the weighted grapharrow_forwardPlease provide an easy way to solve it correctly.arrow_forwardA. Consider the line from (2,3) to (9,8). Use the Bresenham’s algorithm to rasterize this line. Given the clipping window points x_min = 4, y_min = 4, x_max = 10, y_max = 8 Find the lines whether accepted or rejected line 1 : x1 = 5, y1 = 5, x2 = 7, y2 = 7, Line 2 : x1 = 7, y1 = 9, x2 = 11, y2 = 4, Line 3 : x1 = 1, y1 = 5, x2 = 4, y2 = 1arrow_forward
- considered a data 1,3,5,7,9,11,13,15,17,19,21,......81. how many iteration are required in linear searcharrow_forward(a) Explain briefly the Dijkstra Algorithm for finding the shortest path of any vertex from a certain starting point vertex, on a Graph (directed or Undirected).arrow_forwardDefine the Interval bisection algorithm?arrow_forward
- A school consists of 6 separate buildings, represented by the vertices in the graph. There are paths between some of the buildings as shown. The graph also shows the length in feet of each path. School administrators want to cover some of these paths with roofs so that students will be able to walk between buildings without getting wet when it rains. To minimize cost, they must select paths to be covered such that the total length to be covered is as small as possible. Use Kruskal's algorithm to determine which paths to cover. Also determine the total length of pathways to be covered. OA. Click here to view figure c. OC. Click here to view figure b. A The total length of pathways to be covered is (Type a whole number.) 45 B Find a minimum spanning tree. Choose the correct answer below. 51 34 19 39 25 E 31 29 30 25 F41 (... D 35 O B. Click here to view figure d. O D. Click here to view figure a.arrow_forward27. A new community of houses are being build and need access to the electric grid by subterranean channels. The graph below illustrates the location of the houses and the distances between them in feet. Use Kruskal's algorithm to determine how the electric company should dig channels in order to minimize the amount of digging. Also determine the minimum total length that must be dug. 53 88 150 137 50 128 110 92 118 149 115 55 105 131 46arrow_forwardWrite the pseudocode for an algorithm that takes as input a list of numbers that are sorted in nondecreasing order, and finds the location(s) of the most frequently occurring element(s) in the list. If there are more than one element that is the most frequently occurring, then return the locations of all of them. Analyze the worst-case time complexity of this algorithm and give the O() estimate. (A list is in nondecreasing order if each number in the list is greater than or equal to the number preceding it.) ((Thank you for your help))arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
12. Searching and Sorting; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=6LOwPhPDwVc;License: Standard YouTube License, CC-BY
Algorithms and Data Structures - Full Course for Beginners from Treehouse; Author: freeCodeCamp.org;https://www.youtube.com/watch?v=8hly31xKli0;License: Standard Youtube License