Precision Machining Technology
3rd Edition
ISBN: 9781337795302
Author: Peter, Hoffman.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 1RQ
What are three safety rules to observe when using screwdrivers?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q7 (12 Marks)
For the system shown in Fig.3:
1- Draw the overall block diagram.
2- Determine the transfer function (Pc(s)/E(s)).
Orifice→
Ps
Actuating error signs)
Flapper
Pb+Pb.
Nozzle.
A
X+X+
Ri
A
I
R2
ㅍ
think
+y
Pc+PC
Figures 4: show a pneumatic controller. The pneumatic
relay has the characteristic
that pc=K pb
, where K>0. What kind of control action does this
controller produce?
a. Derive the mathematical model for the system
b. Derive the transfer function Pc(s)/E(s)
-Solve step by step
Orifice
F+Ph
R₁
Actuating error signal
Flapper
Nozzle.
x+x
F+Pe
think
The equation of the turning moment diagram for the three crank engine and the equation
of the moment required by a machine connected to this engine are given below:
Engine Torque
Machine Torque
T=10000-500 sin (40)
T=10000+2000 sin (20)
N.m
N.m
where
radians is the crank angle from inner dead center and the mean engine speed is
300 rpm. It is required to select a proper flywheel (find the moment of inertia of the flywheel
in kgm2) and then calculate the power of the engine if the total percentage fluctuation of
speed of the flywheel is ±1% of the mean speed. Calculate the angular acceleration of the
flywheel when angle is 45°.
Chapter 3 Solutions
Precision Machining Technology
Ch. 3.1 - Information such as tolerances and scale can be...Ch. 3.1 - What view of a drawing usually shows the most...Ch. 3.1 - Prob. 3RQCh. 3.1 - The line type used to show edges of an object that...Ch. 3.1 - What line type is used to show edges of an object...Ch. 3.1 - What two line types work together to show sizes on...Ch. 3.1 - Identify the line types labeled in the print...Ch. 3.1 - Define and briefly describe the following...Ch. 3.1 - A dimension listed on an engineering drawing is...Ch. 3.1 - List and briefly describe the three types of...
Ch. 3.1 - Briefly describe the difference between a...Ch. 3.1 - The relationship between sizes of mating parts is...Ch. 3.1 - What does GDT stand for?Ch. 3.1 - A plane used as a reference for dimensions is...Ch. 3.1 - A GDT symbol and the amount of tolerance are shown...Ch. 3.1 - What are the five categories of symbols used in...Ch. 3.1 - What is a feature of size?Ch. 3.1 - Briefly explain the benefit of a position...Ch. 3.2 - Prob. 1RQCh. 3.2 - What is the purpose of layout fluid (dye)?Ch. 3.2 - Prob. 3RQCh. 3.2 - Briefly define a scriber and its use.Ch. 3.2 - What two angles can be laid out with the...Ch. 3.2 - What two tasks can a divider be used to perform?Ch. 3.2 - What safety precautions should be observed when...Ch. 3.2 - What would the divider setting be to scribe a...Ch. 3.2 - What would the divider setting be to scribe an arc...Ch. 3.2 - Prob. 10RQCh. 3.2 - Prob. 11RQCh. 3.2 - Briefly describe the use of a surface gage.Ch. 3.3 - What are three safety rules to observe when using...Ch. 3.3 - List three types of screwdriver tips.Ch. 3.3 - What is the advantage of using slip joint pliers?Ch. 3.3 - What is an advantage of using locking pliers?Ch. 3.3 - What are two uses for a ball peen hammer?Ch. 3.3 - What is the advantage of a soft face hammer?Ch. 3.3 - In what situation would a box-end wrench be chosen...Ch. 3.3 - List two precautions to observe when using...Ch. 3.3 - What is one method of preventing damage to work...Ch. 3.3 - List three safety precautions to be observed when...Ch. 3.3 - In which direction should hacksaw blade teeth...Ch. 3.3 - List two safety precautions that should be...Ch. 3.3 - Will a single-cut or a double-cut file remove...Ch. 3.3 - Will a single-cut or a double-cut file produce a...Ch. 3.3 - ___________ and _________ are two common filing...Ch. 3.3 - What tool is used to clean a file?Ch. 3.3 - What are the two forms of abrasives used in...Ch. 3.4 - Sawing machines can be divided into roughly four...Ch. 3.4 - The vertical band saw is particularly useful, as...Ch. 3.4 - The horizontal band saw is ideal for cutting...Ch. 3.4 - Cutting action on the power hacksaw is very...Ch. 3.4 - List three safety precautions to observe when...Ch. 3.4 - Briefly describe the process to prepare for...Ch. 3.4 - List three safety precautions to observe when...Ch. 3.4 - What type of band saw blade has HSS teeth welded...Ch. 3.4 - How many saw teeth should be engaged in the...Ch. 3.4 - Name the three different types of tooth patterns.Ch. 3.4 - What are the three types of tooth set and why is...Ch. 3.4 - The slot created in a workpiece by the saw blade...Ch. 3.4 - Explain how to use a push stick.Ch. 3.4 - Saws should be ____________ _____________ when a...Ch. 3.4 - Saw guides should be mounted ________ above the...Ch. 3.4 - Why must a band saw blade be annealed after...Ch. 3.4 - Why does a band saw blade need to be ground after...Ch. 3.4 - Clearance between the vertical band saw guides and...Ch. 3.4 - Band saw cutting speeds are given in _________.Ch. 3.5 - What is the main benefit of offhand abrasive...Ch. 3.5 - What type of metals should not be ground on a...Ch. 3.5 - Which wheel is finer, a 60 grit or a 36 grit?Ch. 3.5 - If a grinder runs at 3400 RPM and you have a wheel...Ch. 3.5 - How is a ring test performed?Ch. 3.5 - Why is it necessary to have blotters on both sides...Ch. 3.5 - The maximum distance that a spark breaker and tool...Ch. 3.5 - When should a grinding wheel be dressed?Ch. 3.5 - Where should you stand when using a grinder?Ch. 3.6 - Define drilling.Ch. 3.6 - What factors might determine when a hole must be...Ch. 3.6 - Prob. 3RQCh. 3.6 - Explain the purpose of a counterbore.Ch. 3.6 - What is the purpose of the pilot on a counterbore?Ch. 3.6 - What should be done as a drill nears the...Ch. 3.6 - Define thread as it relates to benchwork.Ch. 3.6 - Explain the major diameter of a thread.Ch. 3.6 - What is the TPI of a -20 thread?Ch. 3.6 - Name two types of tap wrenches.Ch. 3.6 - A 3/8-16 threaded hole needs to be tapped deeper....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Design a cotter joint to support a axial load of 100kN . Carbon steel material selected whichhas Tensile stress = 100MPa Compressive stress =150MPa; Shear stress =60MPaarrow_forwardDesign a cotter joint to support a axial load of 100kN . Carbon steel material selected whichhas Tensile stress = 100MPa Compressive stress =150MPa; Shear stress =60MPaarrow_forwardI need all the derivations from Bohr's postulates in handwritten formarrow_forward
- 12. Figure Q12 shows a prospective design for a conveyor roller system, for transferring crates, one at a time. The system is made up of two parallel rectangular steel beams, built-in at one end and simply supported at the other, with closely spaced rollers mounted in-between, for the crate to pass over. a) Using Macaulay notation, carry out an analysis of the problem and calculate the deflection of the mid-length point of the beams when the crate is centrally located, midway between A and B. State any important assumptions used in your analysis. [20 marks] b) Comment briefly whether this would be the maximum deflection of the beams when the crate is centrally located. 2 m 8 m A Direction of travel Figure Q12 (side view, only one beam visible) Useful information I for each separate beam = 12 ×10 m² E for both beams = 210 GPa Weight of one crate = 800 N [5 marks] Barrow_forward11. A ring (side view shown in Figure Q11) has a circular solid cross-section of 5 mm diameter. The ring itself has a radius of R = 100 mm and a very narrow gap at point A, that allows the two free ends to be pulled apart by forces P, increasing the size of the gap. ○ P A Figure Q11 P a) Show that the total strain energy of the ring due to the applied forces is: U = 3πP²R³ 2EI [12 marks] b) Find the maximum bending stress produced if forces of P = 8 N are applied. [6 marks] c) What minimum force P would cause the material in the ring to yield and at which locations could this yielding begin to occur? Useful information E for the ring material = 75 GPa Oyield for the ring material = 190 MPa [7 marks]arrow_forwardQ2(15 Marks): From Fig. 2, Determine (a) mass equivalent in term x2, (b) stiffness equivalent in term x2, and (c) the natural frequency for the system in term x2. Note: (1) J Cylinder = mcr? J link (2) 2 3 Pulley, mass moment of inertia J Rigid link 1 (mass m₁), rotates with pulley. about O Cylinder, mass m Adherence to the symbols as in the question 152 153 xx(1) Fig. (2) m k₁ nimmunizmu Rigid link 2 (mass m₂)arrow_forward
- Q3-B (7 Marks): A mass (m) is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced motion of the mass is observed to be 20 mm. Find the value of mass (m).arrow_forwardFig. (2) Q3-A (8 Marks): An automobile is modeled as a single-degree-of-freedom system vibrating in the vertical direction. It is driven along a road whose elevation varies sinusoidally. The distance from peak to trough is 0.2 m and the distance along the road between the peaks is 35 m. If the natural frequency of the automobile is 2 Hz and the damping ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the automobile at a speed of 60 km/hour 6.18arrow_forward2. Q4(15 Marks): The motor-pump system shown in Fig. 4. is modeled as a rigid bar of mass m=50 kg and mass moment of inertia Jo=100 kg-m. The foundation of the system can be replaced by two springs of stiffness k=500 N/m and k₂-200 N/m and L=1 m. Determine the natural frequencies of the system. Motor, Fig. (4) 1 6(1) Pump C.G. x(1) x₁(1) Base (a) Foundation (b) C.G. m, Jo x2(1)arrow_forward
- Q5(15 marks): Two equal pendulum free to rotate counterclockwise about the x-x axis are couple together by a rubber hose of torsional stiffness K lb.in/rad.as shown in Fig.5. determine the natural frequencies and mode shape for the normal modes of vibration. If L=19.3 in., W=3.86 lb, and k=20 lb.in/rad. Note: J=mL2 X (1) m 2 mc² 2 Xarrow_forwardUniversity of Babylon College of Engineering\Al-Musayab Automobile Engineering Department Final Examination/1st Attempt جامعة بابل Subject: I. C. Engines I Maximum Time: 3 Hours Class: 3rd Date: / / 2023 Answer 07 of the following questions (First Semester) 2022/2023 (1) Choose the correct answer for eight only from below 1- Indicator diagram shows for one complete revolution of crank Maximum mark: 50 Deg. a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder c) variation of kinetic and pressure heat in the cylinder. d) none of the above. 2- A carburetor is used to supply (a) petrol, air and lubricating oil (b) air and diesel (e) petrol and lubricating oil (d) petrol and air. 3- In a four stroke cycle petrol engine, the charge is compressed when a) inlet valve is closed. b) exit valve is closed. c) both inlet and exit valves are closed. d) both inlet and exit valves are open. (8 deg.) 4- For an engine operating on air standard Otto cycle, the…arrow_forward(6) Determine the sizes of fuel orifice to give a 13.5 air fuel ratio, if the venture throat has 3 cm diameter and the pressure drop in the venture is 6.5 cm Hg. The air temperature and pressure at carburetor entrance are 1 bar and 27 °C respectively. The fuel orifice is at the same level as that of the float chamber. Take density of gasoline as (7 deg.) 740 kg/m³ and discharge coefficient as unity. Assume atmospheric pressure to be 76 cm of Hg. (7) A four-cylinder, four-stroke internal combustion engine has a bore of 87 mm. and a stroke of 77 mm. The clearance volume is 17% of the stroke volume and the engine with speed of 2700 rpm. The processes within each cylinder are modeled as an Otto cycle with a pressure of 1 atm and a temperature of 17 °C at the beginning (7 deg.) of compression. The maximum temperature in the cycle is 2717 °C (a) Draw the P-v diagram; label Pressures, Temperatures, Qin, and Qual (b) Calculate the mass of air at the beginning of the cycle (c) Calculate the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
General Industrial Safety; Author: Jim Pytel;https://www.youtube.com/watch?v=RXtF_vQRebM;License: Standard youtube license