Precision Machining Technology
3rd Edition
ISBN: 9781337795302
Author: Peter, Hoffman.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.1, Problem 4RQ
The line type used to show edges of an object that can be seen in a particular view is called a(n)______ or_______ line.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (p = 0.001 kg m-1 s-1) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
y = +h
I
2h = 1 cm
x1
y = -h
u(y)
1 dP
2μ dx
-y² + Ay + B
moving plate
stationary plate
U
2
I2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
Question 1
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
1 dP
u(y)
=
2μ dx
-y² + Ay + B
y= +h
Ꮖ
2h=1 cm
1
x1
y = −h
moving plate
stationary plate
2
X2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
(a) By considering the appropriate boundary conditions, show that the constants take
the following forms:
U
U
1 dP
A =…
Question 2
You are an engineer working in the propulsion team for a supersonic civil transport
aircraft driven by a turbojet engine, where you have oversight of the design for the
engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can
operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are
asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of
14,000 m. For all parts of the question, you can assume that the flow path of air through
the engine has a circular cross section.
(a)
← intake
normal
shock
472 m/s
A B
(b)
50 m/s
H
472 m/s
B
engine
altitude: 14,000 m
exhaust nozzle
E
F
exit to
atmosphere
diameter: DE = 0.30 m
E
F
diameter: DF = 0.66 m
Figure Q2: Propulsion system for a supersonic aircraft.
a) When the aircraft is at an altitude of 14,000 m, use the International Standard
Atmosphere in the Module Data Book to state the local air pressure and tempera-
ture. Thus show that the aircraft speed…
Chapter 3 Solutions
Precision Machining Technology
Ch. 3.1 - Information such as tolerances and scale can be...Ch. 3.1 - What view of a drawing usually shows the most...Ch. 3.1 - Prob. 3RQCh. 3.1 - The line type used to show edges of an object that...Ch. 3.1 - What line type is used to show edges of an object...Ch. 3.1 - What two line types work together to show sizes on...Ch. 3.1 - Identify the line types labeled in the print...Ch. 3.1 - Define and briefly describe the following...Ch. 3.1 - A dimension listed on an engineering drawing is...Ch. 3.1 - List and briefly describe the three types of...
Ch. 3.1 - Briefly describe the difference between a...Ch. 3.1 - The relationship between sizes of mating parts is...Ch. 3.1 - What does GDT stand for?Ch. 3.1 - A plane used as a reference for dimensions is...Ch. 3.1 - A GDT symbol and the amount of tolerance are shown...Ch. 3.1 - What are the five categories of symbols used in...Ch. 3.1 - What is a feature of size?Ch. 3.1 - Briefly explain the benefit of a position...Ch. 3.2 - Prob. 1RQCh. 3.2 - What is the purpose of layout fluid (dye)?Ch. 3.2 - Prob. 3RQCh. 3.2 - Briefly define a scriber and its use.Ch. 3.2 - What two angles can be laid out with the...Ch. 3.2 - What two tasks can a divider be used to perform?Ch. 3.2 - What safety precautions should be observed when...Ch. 3.2 - What would the divider setting be to scribe a...Ch. 3.2 - What would the divider setting be to scribe an arc...Ch. 3.2 - Prob. 10RQCh. 3.2 - Prob. 11RQCh. 3.2 - Briefly describe the use of a surface gage.Ch. 3.3 - What are three safety rules to observe when using...Ch. 3.3 - List three types of screwdriver tips.Ch. 3.3 - What is the advantage of using slip joint pliers?Ch. 3.3 - What is an advantage of using locking pliers?Ch. 3.3 - What are two uses for a ball peen hammer?Ch. 3.3 - What is the advantage of a soft face hammer?Ch. 3.3 - In what situation would a box-end wrench be chosen...Ch. 3.3 - List two precautions to observe when using...Ch. 3.3 - What is one method of preventing damage to work...Ch. 3.3 - List three safety precautions to be observed when...Ch. 3.3 - In which direction should hacksaw blade teeth...Ch. 3.3 - List two safety precautions that should be...Ch. 3.3 - Will a single-cut or a double-cut file remove...Ch. 3.3 - Will a single-cut or a double-cut file produce a...Ch. 3.3 - ___________ and _________ are two common filing...Ch. 3.3 - What tool is used to clean a file?Ch. 3.3 - What are the two forms of abrasives used in...Ch. 3.4 - Sawing machines can be divided into roughly four...Ch. 3.4 - The vertical band saw is particularly useful, as...Ch. 3.4 - The horizontal band saw is ideal for cutting...Ch. 3.4 - Cutting action on the power hacksaw is very...Ch. 3.4 - List three safety precautions to observe when...Ch. 3.4 - Briefly describe the process to prepare for...Ch. 3.4 - List three safety precautions to observe when...Ch. 3.4 - What type of band saw blade has HSS teeth welded...Ch. 3.4 - How many saw teeth should be engaged in the...Ch. 3.4 - Name the three different types of tooth patterns.Ch. 3.4 - What are the three types of tooth set and why is...Ch. 3.4 - The slot created in a workpiece by the saw blade...Ch. 3.4 - Explain how to use a push stick.Ch. 3.4 - Saws should be ____________ _____________ when a...Ch. 3.4 - Saw guides should be mounted ________ above the...Ch. 3.4 - Why must a band saw blade be annealed after...Ch. 3.4 - Why does a band saw blade need to be ground after...Ch. 3.4 - Clearance between the vertical band saw guides and...Ch. 3.4 - Band saw cutting speeds are given in _________.Ch. 3.5 - What is the main benefit of offhand abrasive...Ch. 3.5 - What type of metals should not be ground on a...Ch. 3.5 - Which wheel is finer, a 60 grit or a 36 grit?Ch. 3.5 - If a grinder runs at 3400 RPM and you have a wheel...Ch. 3.5 - How is a ring test performed?Ch. 3.5 - Why is it necessary to have blotters on both sides...Ch. 3.5 - The maximum distance that a spark breaker and tool...Ch. 3.5 - When should a grinding wheel be dressed?Ch. 3.5 - Where should you stand when using a grinder?Ch. 3.6 - Define drilling.Ch. 3.6 - What factors might determine when a hole must be...Ch. 3.6 - Prob. 3RQCh. 3.6 - Explain the purpose of a counterbore.Ch. 3.6 - What is the purpose of the pilot on a counterbore?Ch. 3.6 - What should be done as a drill nears the...Ch. 3.6 - Define thread as it relates to benchwork.Ch. 3.6 - Explain the major diameter of a thread.Ch. 3.6 - What is the TPI of a -20 thread?Ch. 3.6 - Name two types of tap wrenches.Ch. 3.6 - A 3/8-16 threaded hole needs to be tapped deeper....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- يكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forwardQuestion 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forward
- given below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forwardPlot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forward
- Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Introduction To Engineering Drawing; Author: EzEd Channel;https://www.youtube.com/watch?v=z4xZmBpXIzQ;License: Standard youtube license