Consider the parallel RLC circuit shown in FIGURE CP32.72.
a. Show that the current drawn from the emf is
Hint: Start with a phasor that is common to all three circuit elements.
b. What is I in the 1imits
c. Find the frequency for which I is a minimum.
d. Sketch a graph of I versus
Want to see the full answer?
Check out a sample textbook solutionChapter 32 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
- Figure P29.84 shows a circuit that consists of two identical emf devices. If R1 = R2 = R and the switch is closed, find an expression (in terms of R and ) for the current I that is in the branch from point a to b.arrow_forward(a) What current flows when a 60.0 Hz, 480 V AC source is connected to a 0.250 (F capacitor? (b) What would the current be at 25.0 kHz?arrow_forward(a) What is the resonant frequency of a resistor, capacitor, and inductor connected in series if R = 100 . L = 2.0 H, and C = 5.0 F ? (b) If this combination is connected to a 100-V source operating at the resonant frequency, what is the power output of die source? (c) What is the Q of the circuit? (d) What is die bandwidth of the circuit?arrow_forward
- (a) What is the resistance of a light bulb that uses an average power of 75.0 W when connected to a 60.0-Hz power source having a maximum voltage of 170. V? (b) What is the resistance of a 100.-W lightbulb?arrow_forwardAn AC source operating at 60. Hz with a maximum voltage of 170 V is connected in series with a resistor (R = 1.2 k) and a capacitor (C = 2.5 F). (a) What is the maximum value of the current in the circuit? (b) What are the maximum values of the potential difference across the resistor and the capacitor? (c) When the current is zero, what are the magnitudes of the potential difference across the resistor, the capacitor, and the AC source? How much charge is on the capacitor at this instant? (d) When the current is at a maximum, what are the magnitudes of the potential differences across the resistor, the capacitor, and the AC source? How much charge is on the capacitor at this instant?arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forward
- An ac source of voltage amplitude 100 V and frequency 1.0 kHz drives an PLC series circuit with R=20, L = 4.0 mH, and C=50F . (a) Determine the rms current through the circuit, (b) What are the rms voltages across the three elements? (c) What is the phase angle between the emf and the current? (d) What is the power output of the source? (e) What is the power dissipated in the resistor?arrow_forwardAn inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forwardA 200- resistor, 150- F capacitor, and 23-H inductor are connected in series with an ac source of amplitude 10 V and variable angular frequency . (a) What is the value of the resonance frequency R? (b) What is the amplitude of the current if =R ? (c) What is the phase constant of the current when =R ? Is it leading or lagging the source voltage, or is It In phase? (d) Write an equation for the voltage drop across the resistor as a function of time when =R . (e) What is the power factor of the circuit when =R ? (f) How much energy is used up by the resistor in 2.5s when =R ?arrow_forward
- A resistor of resistance R = 10 Ω is connected in series with an inductor of L = 15 mH. The RL combination is connected to a variable voltage power supply (V = 4.5 V) by a switch as shown. a. What is the time constant (τ) of the combination in seconds? b. The power supply is set to maintain a constant voltage of V = 4.5 V and the switch is closed. Calculate the current, in amperes, through the circuit at t = 0.29 ms after the switch is closed. c. Calculate the current through the circuit, in amperes, after the switch has been closed for a long time.arrow_forwardA1-2. This is Differential Equations subject. please do help me with the following problems. The topic is all about APPLICATIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONarrow_forwardHi, I've sent you two questions, and according to the policy, you only answered one of them. And It's fine with me. Now I am missing answers to the second part of my questions. Who says: 1- Opg. 32.16: An AC source with AVmax = 150 V and f = 50 Hz is connected between points a and d in Figure P32.16. Calculate the maximum voltages between (a) points a and b, (b) points b and c, (c) points c and d, and (d) points b and d le 185 mH 65.0 µF Figur P32.16 40.0 N 2- How does the (phasor diagram) look for this assignment? Now, I send both parties together because they are related to each other. But I only want an answer to the second part. Many thanks for the help.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning