Concept explainers
The magnitude of the dipole moment associated with an atom of iron in an iron bar is 2.1 × 10–23 J/T. Assume that all (he atoms in the liar, which is 5.0 cm long and has a cross-sectional area of 1.0 cm2, have their dipole moments aligned, (a) What is (he dipole moment of the bar? (b) What torque must he exerted to hold this magnet perpendicular to an external field of magnitude 1.5 T? (The density of iron is 7.9 g/cm3.)
Want to see the full answer?
Check out a sample textbook solutionChapter 32 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Principles of Anatomy and Physiology
Campbell Biology: Concepts & Connections (9th Edition)
College Physics: A Strategic Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
- Check Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east, (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.arrow_forwardCheck Your Understanding In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum energy of the dipole?arrow_forwardA wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forward
- If a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forwardCheck Your Understanding A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page, (a) If the wire's arrent runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the current nms in the -x-direction?arrow_forward12.4 Check Your Understanding Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?arrow_forward
- Consider an electron rotating in a circular orbit of radius r. Show that the magnitudes of the magnetic dipole moment and the angular momentum L of the electron are related by: = L=e2marrow_forwardA solenoid with an iron core is 25 cm long and is wrapped with 100 turns of wire. When the current through the solenoid is 10 A, the magnetic field inside it is 2.0 T. For this current, what is the permeability of the iron? If the current is turned off and then restored to 10 A, will the magnetic field necessarily return to 2.0 T?arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forward
- A current of 1.2 A is flowing in a coaxial cable whose outer radius is five times its inner radius. What is the magnetic field energy stored in a 3.0-m length of the cable?arrow_forwardA particle of charge q and mass m is accelerated from rest through a potential difference V, after silica it encounters a uniform magnetic field B. If the particle moves in a plane perpendicular to B, shaft is the radius of its circular orbit?arrow_forwardThe current loop shown in the accompanying figure lies in the plane of the page, as does the magnetic field. Determine the net force and the net torque on the loop if I=10and B=1.5T .arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College