FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 19P
To determine
To find:
For the given figure, the magnitude of the magnetic field due to displacement current at radial distance.
a)
b)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
circular region of radius R = 3.00 cm in which a displacement current is directed out of the page. The displacement current has a uniform density of magnitude Jd = 6.00 A/m2.What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm?
A circular plate has a radius of 6 cm in which a displacement current is directed out of the page. The displacement current has a uniform density of magnitude
Jd = 3 A/m2. What is the magnitude of the magnetic field due to the displacement current, id at a radial distance 2.5 cm?
Uniform displacement-current density. The figure shows a circular
region of radius R = 2.60 cm in which a displacement current is
directed out of the page.The displacement current has a uniform
density of magnitude J = 4.30 A/m². What is the magnitude of the
magnetic field due to the displacement current at radial distances
(a) 1.10 cm and (b) 5.50 cm?
(a) Number i
(b) Number i
R
Units
nT
Units nT
Chapter 32 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 32 - Figure 32-19a shows a capacitor, with circular...Ch. 32 - Prob. 2QCh. 32 - Prob. 3QCh. 32 - Figure 32-22a shows a pair of opposite spin...Ch. 32 - An electron in an external magnetic field Bext has...Ch. 32 - Prob. 6QCh. 32 - Figure 32-23 shows a face-on view of one of the...Ch. 32 - Prob. 8QCh. 32 - Replace the current loops of Question 8 and Fig....Ch. 32 - Prob. 10Q
Ch. 32 - Figure 32-25 represents three rectangular samples...Ch. 32 - Prob. 12QCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - GO Nonuniform electric flux. Figure 32-30 shows a...Ch. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - The magnitude of the electric field between the...Ch. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - GO Figure 32-35a shows the current i that is...Ch. 32 - Prob. 29PCh. 32 - Assume the average value of the vertical component...Ch. 32 - In New Hampshire the average horizontal component...Ch. 32 - Figure 32-37a is a one-axis graph along which two...Ch. 32 - SSM WWWIf an electron in an atom has an orbital...Ch. 32 - Prob. 34PCh. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Assume that an electron of mass m and charge...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Figure 32-39 gives the magnetization curve for a...Ch. 32 - Prob. 45PCh. 32 - You place a magnetic compass on a horizontal...Ch. 32 - SSM ILW WWW The magnitude of the magnetic dipole...Ch. 32 - The magnitude of the dipole moment associated with...Ch. 32 - SSMThe exchange coupling mentioned in Module 32-8...Ch. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Using the approximations given in Problem 61, find...Ch. 32 - Earth has a magnetic dipole moment of 8.0 1022...Ch. 32 - A charge q is distributed uniformly around a thin...Ch. 32 - A magnetic compass has its needle, of mass 0.050...Ch. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - SSMThe magnetic field of Earth can be approximated...Ch. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - In Fig. 32-42, a parallel-plate capacitor is being...Ch. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - SSM If an electron in an atom has orbital angular...Ch. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - What are the measured components of the orbital...
Knowledge Booster
Similar questions
- A long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardA mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forward
- Nonuniform displacement-current density. The figure shows a circular region of radius R = 5.0 cm in which a displacement current is directed out of the page. The magnitude of the density of this displacement current is given by Jd = (9 A/m²)(1 - r/R), where r is the radial distance (r ≤ R). What is the magnitude of the magnetic field due to the displacement current at (a) r = 2.5 cm and (b) r = = 6.5 cm? (a) B = i (b) B= T Rarrow_forwarda circular region of radius R = 3.00 cm in which a uniform displacement current id = 0.500 A is out of the page.What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm?arrow_forwardNonuniform displacement current. The figure shows a circular region of radius R = 3.5 cm in which a displacement current is directed out of the page. The magnitude of the displacement current is J, = (2 A)(r/R), where r is the radial distance (r < R) from the center. What is the magnitude of the magnetic field due to Ja at radial distances (a) r= 1.5 cm and (b) r%3D 4.0 cт? R 11.42 (а) В - 100 (b) В %-arrow_forward
- Nonuniform displacement-current density. The figure shows a circular region of radius R = 5.0 cm in which a displacement current is directed out of the page. The magnitude of the density of this displacement current is given by Jo (9 A/m2)(1-r/R), where r is the radial distance (r< R). What is the magnitude of the magnetic field due to the displacement current at (a) r = 2.5 cm and (b) r= 6.5 cm? Rarrow_forwardProblem 2: An electric current I = 0.55 A is traveling in a circular wire with radius R = 0.055 m. ds Part (a) Express the magnetic field vector B generated at the center O in terms of the current I, the radius vector R, and the length element vector ds. SchematicChoice : Rx ds ds x R В 4 ds x R 4T B = - %3D = - R3 R3 HọI R3 R3 ds x R B HọI Rx ds B= - В - ds x R R3 R3 Part (b) What's the direction of the magnetic field at point 0? MultipleChoice : 1) Upward. 2) Out of the screen. 3) To the left. 4) To the right. 5) Downward. 6) Into the screen. Part (c) Express the magnitude of the magnetic field at point O in terms of I and R. Expression : |B| = Select from the variables below to write your expression. Note that all variables may not be required. a, B, µo, T, 0, a, b, c, d, e, g, h, I, j, k, m, P, R, S, t Part (d) Calculate the numerical value of B, in tesla. Numeric : A numeric value is expected and not an expression. |B| =arrow_forwardNonuniform displacement current. The figure shows a circular region of radius R = 3.0 cm in which a displacement current is directed out of the page. The magnitude of the displacement current is Jd = (2 A)(r/R), where r is the radial distance (r ? R) from the center. What is the magnitude of the magnetic field due to Jd at radial distances (a) r = 1.0 cm and (b) r = 5.5 cm? Please type answer no write by hend.arrow_forward
- Nonuniform displacement current. The figure shows a circular region of radius R = 5.5 cm in which a displacement current is directed out of the page. The magnitude of the displacement current is J a = (9 A)(r/R), where r is the radial distance (r s R) from the center. What is the magnitude of the magnetic field due to J at radial distances (a)r = 3.0 cm and (b) r = 6.5 cm?arrow_forwardIn Fig. 4, a long circular pipe with outside radius R = 2.6 cm carries a (uniformly distributed) current i = 8.00 mA into the page. A wire runs parallel to the pipe at a distance of 3R from center to center. Find the (a) magnitude and (b) direction (into or out of the page) of the current in the wire such that the net magnetic field at point P has the same magnitude as the net magnetic field at the center of the pipe but is in the opposite direction. Wire O- P.- х X. Pipe Fig. 4arrow_forwardAn electric current is flowing through a long cylindrical conductor with radius a = 0.15 m. The current density J = 2.5 A/m2 is uniform in the cylinder. In this problem, we consider an imaginary cylinder with radius r around the axis AB. Part (e) When r is greater than a, express the current inside the imaginary cylinder in terms of r, a, and J. Part (f) Express the magnitude of the magnetic field, B, at r > a in terms of I and r. Part (g) Express B in terms of J, a and r. Part (h) For r = 2 a, calculate the numerical value of B in Tesla. I already did the first few parts. I am most confused on parts e and g, how to derive the equations. Thanks so much!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning