FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 51P
To determine
To find:
the magnetic dipole moment of a single nickel atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The density of charge carriers for copper is 8.47 × 1028 electrons per cubic meter. What will be the Hall voltage reading from a probe made up of 3 cm × 2 cm × 1 cm (L × W × T) copper plate when a current of 1.5 A is passed through it in a magnetic field of 2.5 T perpendicular to the 3 cm × 2 cm.
A 0.50 T magnetic field is applied to a paramagnetic gas whose atoms have an intrinsic magnetic dipole moment of 1.0* 10^23 J/T. At what temperature will the mean kinetic energy of translation of the atoms equal the energy required to reverse such a dipole end for end in this magnetic field?
A Paramagnetic material has 1028atoms/m3. The magnetic moment of each atom is 2.8 × 10−23Am3.Calculate the Paramagnetic susceptibility at 200K. What would be the dipole moment of a bar of this material 1meter long and 1square-cm cross-section placed in a field of 6 × 106A/m
Chapter 32 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 32 - Figure 32-19a shows a capacitor, with circular...Ch. 32 - Prob. 2QCh. 32 - Prob. 3QCh. 32 - Figure 32-22a shows a pair of opposite spin...Ch. 32 - An electron in an external magnetic field Bext has...Ch. 32 - Prob. 6QCh. 32 - Figure 32-23 shows a face-on view of one of the...Ch. 32 - Prob. 8QCh. 32 - Replace the current loops of Question 8 and Fig....Ch. 32 - Prob. 10Q
Ch. 32 - Figure 32-25 represents three rectangular samples...Ch. 32 - Prob. 12QCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - GO Nonuniform electric flux. Figure 32-30 shows a...Ch. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - The magnitude of the electric field between the...Ch. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - GO Figure 32-35a shows the current i that is...Ch. 32 - Prob. 29PCh. 32 - Assume the average value of the vertical component...Ch. 32 - In New Hampshire the average horizontal component...Ch. 32 - Figure 32-37a is a one-axis graph along which two...Ch. 32 - SSM WWWIf an electron in an atom has an orbital...Ch. 32 - Prob. 34PCh. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Assume that an electron of mass m and charge...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Figure 32-39 gives the magnetization curve for a...Ch. 32 - Prob. 45PCh. 32 - You place a magnetic compass on a horizontal...Ch. 32 - SSM ILW WWW The magnitude of the magnetic dipole...Ch. 32 - The magnitude of the dipole moment associated with...Ch. 32 - SSMThe exchange coupling mentioned in Module 32-8...Ch. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Using the approximations given in Problem 61, find...Ch. 32 - Earth has a magnetic dipole moment of 8.0 1022...Ch. 32 - A charge q is distributed uniformly around a thin...Ch. 32 - A magnetic compass has its needle, of mass 0.050...Ch. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - SSMThe magnetic field of Earth can be approximated...Ch. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - In Fig. 32-42, a parallel-plate capacitor is being...Ch. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - SSM If an electron in an atom has orbital angular...Ch. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - What are the measured components of the orbital...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forwardAcircularcoiofwireofradius5.Ocmhas2Otums and carries a current of 2.0 A. The coil lies in a magnetic field of magnitude 0.50 T that is directed parallel to the plane of the coil. (a) What is the magnetic dipole moment of the coil? (b) What is the torque on the coil?arrow_forwardA proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forward
- The magnetic dipole moment of the nickel atom is about 5.6 x 10-24 A· m2. (a) Calculate the maximum magnetic dipole moment (in A •m²) of a domain consisting of 1019 nickel atoms. A: m2 (b) What current (in A) would have to flow through a single circular loop of wire of diameter 2.2 cm to produce the magnetic dipole moment you calculated? Aarrow_forwardA planet with earth like magnetic field can be considered as a bar magnet. Suppose, we have such a bar magnet. We will treat it a magnetic dipole. Its dipole moment is given by the μ⃗ =μyj^+μzk^ which remains unchanged without the application of external magnetic field. Suppose, a uniform magnetic field given by, B⃗ =((39.0)j^+(61.0)k^)×109Tesla. Some neutron stars can generate such intense magnetic field. When this magnetic field is applied, the bar magnet starts to rotate. At some instant during rotation, consider it as "position 1" of the dipole, it's torque is τ⃗ =(2892.875181053008)×1029.0i^N⋅m and potential energy is U=−3190.214598870666×1029.0J. a)Find the yand z component of magnetic dipole moment at this position? y component of the dipole moment z component of the dipole moment b)What is the angle between magnetic dipole moment and magnetic field in this position? angle between magnetic dipole moment and magnetic field c)Calculate the minimum potential energy the dipole…arrow_forwardNiobium metal becomes a superconductor when cooled below 9 K. Its superconductivity is destroyed when the surface magnetic field exceeds 0.100 T. In the absence of any external magnetic field, determine the maximum current a 2.36-mm-diameter niobium wire can carry and remain superconducting.arrow_forward
- Calculate the magnetic field and vector magnetic potential on axis resulting form z-directed magnetic dipole located at z=z0arrow_forwardA strip of copper 150 mm thick and 4.5 mm wide is placed in a uniform magnetic field of magnitude 0.65 T, with perpendicular to the strip. A current i = 23 A is then sent through the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (The number of charge carriers per unit volume for copper is 8.47* 10^28 electrons/m3.)arrow_forwardA bar of magnetic material consists of atoms with magnetic dipole moments of magnitude μatom = 3.50 ×10-23J/T. The bar contains N = 2.4 × 1021 atoms and has a volume of V = 3.0 × 10-8 m 3 . What is the saturation magnetization? If only 0.300% of the atomic dipoles are aligned, what is the magnetization?arrow_forward
- A bar magnet made of steel has magnetic moment of 2.5 Am? and a mass of 6.6 x 103 kg. If the density of steel is 7.9 x 103 kg/m³. Find the intensity of magnetization of the magnet.arrow_forwardA proton enters a magnetic field with a speed of v= 1.2080 Mm,whose magnetic flux density B = 0.9428 T. Calculate the force exerted by the magnetic field on the proton. 0 α B S What is the magnetic force on the proton? Fm = N Insert only 3 most significant digits of your answer without rounding.arrow_forwardA particle with charge q = 8 µC is moving with velocity ở- 3x 10 (m/s) j. The magnetic force on the particle is measured to be F =7x 10-3 (N) î + 5 × 10-3 (N) Ê . %3D In which of the following options is the scalar product, B-F, given correctly in (T-N) unit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning