UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 32.11DQ
To determine
. The person who is holds the flashlight feels the recoil effect when the person fires the flash light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a light beam carries momentum, should a person holding a flashlight feel a recoil analogous to the recoil of a rifle when it is fired? Why is this recoil not actually observed?
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 29 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 19 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.Note: Assume that the kinetic energy is also converted into the gamma rays, and is included in the two photons.
Chapter 32 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 32.1 - (a) Is it possible to have a purely electric wave...Ch. 32.2 - Prob. 32.2TYUCh. 32.3 - The first of Eqs. (32.17) gives the electric field...Ch. 32.4 - Figure 32.13 shows one wavelength of a sinusoidal...Ch. 32.5 - Prob. 32.5TYUCh. 32 - By measuring the electric and magnetic fields at a...Ch. 32 - When driving on the upper level of the Bay Bridge,...Ch. 32 - Give several examples of electromagnetic waves...Ch. 32 - Sometimes neon signs located near a powerful radio...Ch. 32 - Is polarization a property of all electromagnetic...
Ch. 32 - Prob. 32.6DQCh. 32 - Prob. 32.7DQCh. 32 - Prob. 32.8DQCh. 32 - Prob. 32.9DQCh. 32 - Most automobiles have vertical antennas for...Ch. 32 - Prob. 32.11DQCh. 32 - Prob. 32.12DQCh. 32 - Does an electromagnetic standing wave have energy?...Ch. 32 - (a) How much time does it take light to travel...Ch. 32 - Consider each of the electric- and magnetic-field...Ch. 32 - Prob. 32.3ECh. 32 - Consider each of the following electric- and...Ch. 32 - BIO Medical X rays. Medical x rays are taken with...Ch. 32 - BIO Ultraviolet Radiation. There are two...Ch. 32 - Prob. 32.7ECh. 32 - Prob. 32.8ECh. 32 - Prob. 32.9ECh. 32 - Prob. 32.10ECh. 32 - Prob. 32.11ECh. 32 - Prob. 32.12ECh. 32 - Prob. 32.13ECh. 32 - An electromagnetic wave with frequency 65.0 Hz...Ch. 32 - Prob. 32.15ECh. 32 - BIO High-Energy Cancer Treatment. Scientists are...Ch. 32 - Prob. 32.17ECh. 32 - A sinusoidal electromagnetic wave from a radio...Ch. 32 - A space probe 2.0 1010 m from a star measures the...Ch. 32 - The energy flow to the earth from sunlight is...Ch. 32 - The intensity of a cylindrical laser beam is 0.800...Ch. 32 - A sinusoidal electromagnetic wave emitted by a...Ch. 32 - Prob. 32.23ECh. 32 - Television Broadcasting. Public television station...Ch. 32 - An intense light source radiates uniformly in all...Ch. 32 - In the 25-ft Space Simulator facility at NASAs Jet...Ch. 32 - BIO Laser Safety. If the eye receives an average...Ch. 32 - A laser beam has diameter 1.20 mm. What is the...Ch. 32 - Laboratory Lasers. He-Ne lasers are often used in...Ch. 32 - Prob. 32.30ECh. 32 - Microwave Oven. The microwaves in a certain...Ch. 32 - Prob. 32.32ECh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Prob. 32.36PCh. 32 - The sun emits energy in the form of...Ch. 32 - Prob. 32.38PCh. 32 - CP Two square reflectors, each 1.50 cm on a side...Ch. 32 - A source of sinusoidal electromagnetic waves...Ch. 32 - Prob. 32.41PCh. 32 - CP A circular wire loop has a radius of 7.50 cm. A...Ch. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - CP Global Positioning System (GPS). The GPS...Ch. 32 - Prob. 32.46PCh. 32 - CP Interplanetary space contains many small...Ch. 32 - Prob. 32.48PCh. 32 - DATA Because the speed of light in vacuum (or air)...Ch. 32 - DATA As a physics lab instructor, you conduct an...Ch. 32 - Prob. 32.51CPCh. 32 - Prob. 32.52CPCh. 32 - Prob. 32.53CPCh. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - Prob. 32.56PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardA light beam with the wavelength of 660 nm (AA) is created by a spaceship (A), is observed as its wavelength is 924 nm (Aobserved). Another spaceship (B) is observed by Earth as it is receding with the speed of 0.7c (VB,Earth). The angular distance between these two spaceship is 90 degrees for an observer at Earth. Find the speed of the spaceship B for an observer located at the spaceship A (VBA). M = 660nm VB,A = ? Aobserved = 924nm VB,Earth = 0.7c Barrow_forward(a) How long in seconds does it take a radio signal to travel 180 km from a transmitter to a receiving antenna? (b) We see a full Moon by reflected sunlight. How much earlier did the light that enters our eye leave the Sun? The Earth – Moon and Earth – Sun distances are 3.8x105 km and 1.5 × 108 km, respectively. (c) What is the round-trip travel time in seconds for light between Earth and a spaceship at a 6.8 × 107 km distance from Earth? (d) Suppose astronomers observe a supernova about 7300 light-years (ly) distant. How long ago in years did the explosion actually occur?arrow_forward
- A small object at rest, absorbs a light pulse of power 20 mW and duration 300 ns. Assuming speed of light as 3 x 108 m/s. the momentum of the object becomes equal to (1) 0.5 10-17 kg m/s (2) 2 x 10-17 kg m/s (3) 3 x 10-17 kg m/s (4) 1 x 10-17 kg m/sarrow_forwardMultiple-Concept Example 6 reveiws the principles that play a role in this problem. A nuclear power reactor generates 3.5 × 10⁹ W of power. In one year (365.25 days), what is the change in the mass of the nuclear fuel due to the energy being taken from the reactor? Number i Unitsarrow_forwardStarting from rest, two skaters "push off" against each other on smooth level ice, where friction is negligible. One is a woman and one is a man. The woman moves away with a velocity of +2.0 m/s relative to the ice. The mass of the woman is 57 kg, and the mass of the man is 76 kg. Assuming that the speed of light is 3.5 m/s, so that the relativistic momentum must be used, find the recoil velocity of the man relative to the ice. (Hint: This problem is similar to Example 6 in Chapter 7.) Number 1.62 Units m/sarrow_forward
- (a) How long in seconds does it take a radio signal to travel 180 km from a transmitter to a receiving antenna? (b) We see a full Moon by reflected sunlight. How much earlier did the light that enters our eye leave the Sun? The Earth - Moon and Earth - Sun distances are 3.8x105 km and 1.5 x 108 km, respectively. (c) What is the round-trip travel time in seconds for light between Earth and a spaceship at a 9.0 x 106 km distance from Earth? (d) Suppose astronomers observe a supernova about 7600 light-years (ly) distant. How long ago in years did the explosion actually occur? (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forwardStarting from rest, two skaters "push off" against each other on smooth level ice, where friction is negligible. One is a woman and one is a man. The woman moves away with a velocity of +2.1 m/s relative to the ice. The mass of the woman is 59 kg, and the mass of the man is 90 kg. Assuming that the speed of light is 2.9 m/s, so that the relativistic momentum must be used, find the recoil velocity of the man relative to the ice. (Hint: This problem is similar to Example 6 in Chapter7.) Number Unitsarrow_forwardStarting from rest, two skaters "push off" against each other on smooth level ice, where friction is negligible. One is a woman and one is a man. The woman moves away with a velocity of +1.9 m/s relative to the ice. The mass of the woman is 59 kg, and the mass of the man is 88 kg. Assuming that the speed of light is 3.6 m/s, so that the relativistic momentum must be used, find the recoil velocity of the man relative to the ice. (Hint: This problem is similar to Example 6 in Chapter 7.) Number i 1.17 Units m/s ◄►arrow_forward
- A man standing still at a train station watches two boys throwing a baseball in a moving train. The train is moving east with a constant speed of 18 m/s and one of the boys throws the ball with a speed of 8 m/s with respect to himself toward the other boy, who is 7 m west from him. What is the velocity of the ball as observed by the man on the station?arrow_forwardScientists working with a particle accelerator determine that an unknown particle has a speed of 1.35 ×108 m/s and a momentum of 2.52 × 10−19 kg m/s. From the curvature of the particle’s path in a magnetic field, they also deduce that it has a positive charge. Using this information, identify the particle.arrow_forwardA tourist is walking at a speed of 1.05 m/s along a 6.03-km path that follows an old canal. If the speed of light in a vacuum were 3.0 m/s, how long would the path be, according to the tourist in km?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning