Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 32, Problem 29PCE
Suppose we were to discover that the ratio of carbon-14 to carbon-12 in the atmosphere was significantly smaller 10,000 years ago than it is today. How would this affect the ages we have assigned to objects on the basis of carbon-14 dating? In particular, would the true age of an object be greater than or less than the age we had previously assigned to it? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Charan is at NASA analyzing Moon rocks. In one of the rocks from the lunar highlands, he discovered 37 % of the original uranium-238 remains, while remaining amount of uranium-238 had decayed into lead. The half life of uranium-238 is 4.5 × 109 years. Assume the only decay product is lead. How old is the lunar maria rock in billions of years (109 years)?
Xavier is at NASA analyzing Moon rocks. In one of the rocks from the lunar Maria, he discovered 80% of the original uranium-238 remains, while remaining amount of uranium-238 had decayed into lead. The half life of uranium-238 is 4.5 x 109 years. Assume the only decay product is lead. How old is the lunar Maria rock in billions of years (109 years) ?
An isotope of a radioactive element has half-life equal to 5 thousand years.
Imagine a sample that is so old that most of its radioactive atoms have decayed, leaving just 20 percent of the initial quantity of the isotope remaining.
How old is the sample?
Give your answer in thousands of years, correct to one decimal place.
Age : ___ thousand years.
Chapter 32 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 32.1 - Prob. 1EYUCh. 32.2 - A given nucleus can decay by alpha decay, beta...Ch. 32.3 - Prob. 3EYUCh. 32.4 - Prob. 4EYUCh. 32.5 - Prob. 5EYUCh. 32.6 - Prob. 6EYUCh. 32.7 - Prob. 7EYUCh. 32.8 - Prob. 8EYUCh. 32.9 - Prob. 9EYUCh. 32 - Prob. 1CQ
Ch. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - Prob. 7CQCh. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 1PCECh. 32 - Prob. 2PCECh. 32 - Prob. 3PCECh. 32 - Prob. 4PCECh. 32 - Prob. 5PCECh. 32 - Prob. 6PCECh. 32 - Prob. 7PCECh. 32 - Prob. 8PCECh. 32 - Prob. 9PCECh. 32 - Prob. 10PCECh. 32 - Prob. 11PCECh. 32 - Prob. 12PCECh. 32 - Prob. 13PCECh. 32 - Prob. 14PCECh. 32 - Prob. 15PCECh. 32 - Prob. 16PCECh. 32 - Prob. 17PCECh. 32 - Prob. 18PCECh. 32 - Prob. 19PCECh. 32 - Prob. 20PCECh. 32 - Prob. 21PCECh. 32 - Prob. 22PCECh. 32 - Prob. 23PCECh. 32 - Prob. 24PCECh. 32 - Prob. 25PCECh. 32 - Prob. 26PCECh. 32 - Prob. 27PCECh. 32 - Prob. 28PCECh. 32 - Suppose we were to discover that the ratio of...Ch. 32 - A radioactive sample is placed in a closed...Ch. 32 - Radon gas has a half-life of 3.82 d. What is the...Ch. 32 - Prob. 32PCECh. 32 - The number of radioactive nuclei in a particular...Ch. 32 - Prob. 34PCECh. 32 - Prob. 35PCECh. 32 - Prob. 36PCECh. 32 - Prob. 37PCECh. 32 - Prob. 38PCECh. 32 - Prob. 39PCECh. 32 - Prob. 40PCECh. 32 - Prob. 41PCECh. 32 - Prob. 42PCECh. 32 - Prob. 43PCECh. 32 - Prob. 44PCECh. 32 - Prob. 45PCECh. 32 - Prob. 46PCECh. 32 - Prob. 47PCECh. 32 - Prob. 48PCECh. 32 - Prob. 49PCECh. 32 - Prob. 50PCECh. 32 - Prob. 51PCECh. 32 - Prob. 52PCECh. 32 - Prob. 53PCECh. 32 - Prob. 54PCECh. 32 - Prob. 55PCECh. 32 - Consider a fusion reaction in which two deuterium...Ch. 32 - Prob. 57PCECh. 32 - Prob. 58PCECh. 32 - Prob. 59PCECh. 32 - Prob. 60PCECh. 32 - Prob. 61PCECh. 32 - Prob. 62PCECh. 32 - Prob. 63PCECh. 32 - Prob. 64PCECh. 32 - Prob. 65PCECh. 32 - Prob. 66PCECh. 32 - Prob. 67PCECh. 32 - Prob. 68GPCh. 32 - Prob. 69GPCh. 32 - Prob. 70GPCh. 32 - Prob. 71GPCh. 32 - Prob. 72GPCh. 32 - Prob. 73GPCh. 32 - Moon Rocks In one of the rocks brought back from...Ch. 32 - Prob. 75GPCh. 32 - Prob. 76GPCh. 32 - Prob. 77GPCh. 32 - Prob. 78GPCh. 32 - Prob. 79GPCh. 32 - Prob. 80GPCh. 32 - Prob. 81GPCh. 32 - Prob. 82GPCh. 32 - Prob. 83GPCh. 32 - Prob. 84GPCh. 32 - Prob. 85GPCh. 32 - Prob. 86GPCh. 32 - Prob. 87GPCh. 32 - Prob. 88GPCh. 32 - Prob. 89PPCh. 32 - Prob. 90PPCh. 32 - Prob. 91PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What type of culture medium would increase the size of a bacterial capsule?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Another cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yello...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An isotope of a radioactive element has half-life equal to 9 thousand years. Imagine a sample that is so old that most of its radioactive atoms have decayed, leaving just 25 percent of the initial quantity of the isotope remaining. How old is the sample? Give your answer in thousands of years, correct to one decimal place.arrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forwardA) Describe the nuclear reaction that forms C14, B) what it decays into, and C) how it isused to date carbon-based life?arrow_forward
- 4b) the average density of the earth is 5.5 g/cm^3. Which has the greater density 1g of uranium of planet earth 4c) which has the greater density -5kg of lead or 10kg of gold? 4d) which has the greater density-5kg of osmium of 10kg is steel? ANSWER ALL PLZ!!arrow_forwardI've started solving this problem, and feel like I'm on the right track, but need help when it comes to solving logarithms. Please see attached photosarrow_forwardequattion : S/4 (1- a) = f*sigma*TS4 Solar Constant (W/m2) S = 1361 How sensitive is the temperature of the earth to changes in the atmospheric transmissivity (f)? The atmosphere is more transmissive (lets more radiation through) when CO2 and other greenhouse gases are lower. During the pre-industrial period, transmissivity (f) was probably around 62% (f = 0.62) and has been decreasing. Calculate how much the Earth's surface temperature would change if the transmissivity changes by ±0.01 (to 0.60 or to 0.62). ___ °C per 1% transmissivity change.arrow_forward
- One of the fossilized remains of the Taong Tabon you found contains 153 grams of Carbon-14 at time t = 0. If the half-life of Carbon-14 is 5 730 years, how much Carbon-14 remains after 500 years?arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) A missile is launched upward with a speed that is half the escape speed. What height (in radii of Earth) will it reach? R/4 R/3 R/2 R 2R A) The weight of a 0.60 kg object at the surface of Planet V is 20 N. The radius of the planet is 4 x 10 6 m. Find the gravitational acceleration at a distance of 2 x 10 6 m from the surface of this planet. 8.9 m/s2 11 m/s2 13 m/s2 18 m/s2 B) Two masses are precisely 1 m apart from each other. The gravitational force each exerts on the other is exactly 1 N. If the masses are identical, what is each mass? 1.22 x 105 kg 1.34 x 1010 kg 2.50 x 105 kg 1.58 x 1010 kgarrow_forwardCan you please answer these questions, not gradedarrow_forward
- Please help me with this question. A=.2arrow_forwardHow did you get this. Can you show your solution and explain how it become like this?arrow_forwardOn Mars, the average temperature is -64 °F and the average atmospheric pressure is0.92 kPa. (a) What is the number of molecules per volume in theMartian atmosphere? (b) Is the number of molecules per volumeon the Earth greater than, less than, or equal to the number pervolume on Mars? Explain your reasoning. (c) Estimate the numberof molecules per volume in Earth’s atmospherearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY