Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 36PCE
To determine
The activity of drug containing
43 99 Tc
when it was injected into the patient
2 .05 h
after it was prepared.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One of the hazards of nuclear explosions is the generation of 90Sr and its subsequent incorporation in place of calcium in bones. This nucl ide emits β particles of energy 0.55 MeV. and has a half-l ife of 28.1 a. Suppose 1.00 μg was absorbed by a newly born ch ild. How much will remain after(a) 19 a, (b) 75 a if none is lost metabolica lly?
A 7. A saline solution of 24Na with an activity of 300 kBq is injected into the bloodstream of one
patient. Ten hours later, the activity of one cubic centimeter of blood is 30 Bq. Calculate the
patient's blood volume.
A 70-kg worker is accidentally exposed for 2.0 minutes to a 21-mCi source of beta radiation from a sample of strontium-90. (a) What is the activity of the radiation source in cps?(b) Suppose that each beta particle has an energy of 0.547 MeV (1 MeV = 1.609 x 10-13 J) and 45% of the radiation is absorbed. Assuming that the absorbed radiation is spread over the person’s entire body,calculate the absorbed dose in rads and in grays.
(c) If the beta particles has an RBE of 1.0, what is the effective absorbed dose in mrem and in sieverts?
Chapter 32 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 32.1 - Prob. 1EYUCh. 32.2 - A given nucleus can decay by alpha decay, beta...Ch. 32.3 - Prob. 3EYUCh. 32.4 - Prob. 4EYUCh. 32.5 - Prob. 5EYUCh. 32.6 - Prob. 6EYUCh. 32.7 - Prob. 7EYUCh. 32.8 - Prob. 8EYUCh. 32.9 - Prob. 9EYUCh. 32 - Prob. 1CQ
Ch. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - Prob. 7CQCh. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 1PCECh. 32 - Prob. 2PCECh. 32 - Prob. 3PCECh. 32 - Prob. 4PCECh. 32 - Prob. 5PCECh. 32 - Prob. 6PCECh. 32 - Prob. 7PCECh. 32 - Prob. 8PCECh. 32 - Prob. 9PCECh. 32 - Prob. 10PCECh. 32 - Prob. 11PCECh. 32 - Prob. 12PCECh. 32 - Prob. 13PCECh. 32 - Prob. 14PCECh. 32 - Prob. 15PCECh. 32 - Prob. 16PCECh. 32 - Prob. 17PCECh. 32 - Prob. 18PCECh. 32 - Prob. 19PCECh. 32 - Prob. 20PCECh. 32 - Prob. 21PCECh. 32 - Prob. 22PCECh. 32 - Prob. 23PCECh. 32 - Prob. 24PCECh. 32 - Prob. 25PCECh. 32 - Prob. 26PCECh. 32 - Prob. 27PCECh. 32 - Prob. 28PCECh. 32 - Suppose we were to discover that the ratio of...Ch. 32 - A radioactive sample is placed in a closed...Ch. 32 - Radon gas has a half-life of 3.82 d. What is the...Ch. 32 - Prob. 32PCECh. 32 - The number of radioactive nuclei in a particular...Ch. 32 - Prob. 34PCECh. 32 - Prob. 35PCECh. 32 - Prob. 36PCECh. 32 - Prob. 37PCECh. 32 - Prob. 38PCECh. 32 - Prob. 39PCECh. 32 - Prob. 40PCECh. 32 - Prob. 41PCECh. 32 - Prob. 42PCECh. 32 - Prob. 43PCECh. 32 - Prob. 44PCECh. 32 - Prob. 45PCECh. 32 - Prob. 46PCECh. 32 - Prob. 47PCECh. 32 - Prob. 48PCECh. 32 - Prob. 49PCECh. 32 - Prob. 50PCECh. 32 - Prob. 51PCECh. 32 - Prob. 52PCECh. 32 - Prob. 53PCECh. 32 - Prob. 54PCECh. 32 - Prob. 55PCECh. 32 - Consider a fusion reaction in which two deuterium...Ch. 32 - Prob. 57PCECh. 32 - Prob. 58PCECh. 32 - Prob. 59PCECh. 32 - Prob. 60PCECh. 32 - Prob. 61PCECh. 32 - Prob. 62PCECh. 32 - Prob. 63PCECh. 32 - Prob. 64PCECh. 32 - Prob. 65PCECh. 32 - Prob. 66PCECh. 32 - Prob. 67PCECh. 32 - Prob. 68GPCh. 32 - Prob. 69GPCh. 32 - Prob. 70GPCh. 32 - Prob. 71GPCh. 32 - Prob. 72GPCh. 32 - Prob. 73GPCh. 32 - Moon Rocks In one of the rocks brought back from...Ch. 32 - Prob. 75GPCh. 32 - Prob. 76GPCh. 32 - Prob. 77GPCh. 32 - Prob. 78GPCh. 32 - Prob. 79GPCh. 32 - Prob. 80GPCh. 32 - Prob. 81GPCh. 32 - Prob. 82GPCh. 32 - Prob. 83GPCh. 32 - Prob. 84GPCh. 32 - Prob. 85GPCh. 32 - Prob. 86GPCh. 32 - Prob. 87GPCh. 32 - Prob. 88GPCh. 32 - Prob. 89PPCh. 32 - Prob. 90PPCh. 32 - Prob. 91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forwardSuppose one load irradiation plant uses a 137Cs source while another uses an equal activity of 60Co. Assuming equal fractions of the (rays from the sources are absorbed, why is more time needed to get the same dose using me 137Cs source?arrow_forward
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardHow many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to acfivity?arrow_forwardIt has become popular for some people to have yearly whole-body scans (CT scans, formerly called CAT scans) using x rays, just to see if they detect anything suspicious. A number of medical people have recently questioned the advisability of such scans, due in part to the radiation they impart. Typically, one such scan gives a dose of 12 mSv, applied to the whole body. By contrast, a chest x ray typically administers 0.20 mSv to only 5.0 kg of tissue. How many chest x rays would deliver the same total amount of energy to the body of a 75 kg person as one whole-body scan?arrow_forward
- Plzarrow_forwardA small region of a cancer patient’s brain is exposed for 24.0 min to 475 Bq of radioactivity from ⁶⁰Co for treatment of atumor. If the brain mass exposed is 1.858 g and β⁻ each particle emitted has an energy of 5.05X10⁻¹⁴J, what is the dose in rads?arrow_forwardA drug tagged with Bq 99 43 Tc (half-life : = 6.05 h) is prepared for a patient. If the original activity of the sample was 1.1×104 Bq, what is its activity (R) after it has been on the shelf for 1.8 h?arrow_forward
- A 95 kgkg patient swallows a 33 μCiμCi beta emitter with a half-life of 5.0 days, and the radioactive nuclei are quickly distributed throughout his body. The beta particles are emitted with an average energy of 0.35 MeVMeV, 90%% of which is absorbed by the body. What dose equivalent does the patient receive in the first week?arrow_forwardAn x-ray technician works 5 days per week, 50 weeks per year. (Assume that the technician takes an average of six x-rays per day and receives a dose of 4.1 rem/yr as a result.) (a) Estimate the dose in rem per x-ray taken. (b) How does this result compare with the amount of low-level background radiation the technician is exposed to? Assume that low-level radiation from natural sources, such as cosmic rays and radioactive rocks and soil, delivers a dose of approximately 0.13 rem/year per person. __________times the normal background levelarrow_forwardA 73.0 kg person experiences a whole-body exposure to alpha radiation with an energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation. A) What is the absorbed dose in rad? Express your answer in rads. B) What is the equivalent dose in rem? Express your answer in rem. C) If the source is 0.0100 gg of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source? Express your answer in decays per second. D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered? Express your answer with the appropriate units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning