Concept explainers
Figure 32-19a shows a capacitor, with circular plates, that is being charged. Point a (near one of the connecting wires) and point b (inside the capacitor gap) are equidistant from the central axis, as are point c (not so near the wire) and point d (between the plates but outside the gap). In Fig. 32-19b, one curve gives the variation with distance r of the magnitude of the magnetic field inside and outside the wire. The other curve gives the variation with distance r of the magnitude of the magnetic field inside and outside the gap. The two curves partially overlap. Which of the three points on the curves correspond to which of the four points of Fig. 32-19a?
Figure 32-19 Question 1.
To find:
The three points on the curve in Fig 32.19 b corresponding to four points of Fig.32-19a.
Answer to Problem 1Q
Solution:
Point 1 on the curve corresponds to a, Pont 2 on the curve corresponds to b, and point 3 on the curve corresponds to c and d.
Explanation of Solution
1) Concept:
We can find the relation between magnetic field and distance from central axis from the formulae for magnetic field inside and outside the circular capacitor. Using this and analyzing the graph and the given figure, we can find the three points on the curve corresponding to four points of Fig.32-19a.
2) Formulae:
i) Inside a circular capacitor, magnetic field is
ii) Outside a circular capacitor, magnetic field is
3) Given:
Figure 32-19a and 32-19b.
Points a and b are equidistant from the central axis. Also points c and d are equidistant from it.
4) Calculations:
The magnetic field at a point inside the capacitor is given by
It implies that
The curve on which point 2 is present satisfies this condition, and there is only one point inside the capacitor b.
Hence, point 2 corresponds to point b.
The magnetic field at a point outside the capacitor is given by
It implies that
The points 1 and 3 are on the curves satisfies this relation.
Since point a and point b are equidistant, therefore we can say that point 1 corresponds to point a.
Remaining point 3 corresponds to points c and d.
Conclusion:
Inside a circular capacitor, the magnetic field is proportional to the distance from the center of the circular plate while outside the circular capacitor, it is inversely proportional the distance from the center of the circular plate.
Want to see more full solutions like this?
Chapter 32 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
The Cosmic Perspective (8th Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
College Physics: A Strategic Approach (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
- help i dont understand this it should look like something like this picture. help me with the stepsarrow_forwardDraw the velocity vectors starting at the black dots and the acceleration vectors including those equal to zero.arrow_forwardYou toss a ball straight up by giving it an initial upward velocity of 18 m/s. What is the velocity of the ball 0.50 s after you released it? Define the positive y direction to be upward, the direction that you toss the ball.arrow_forward
- 10:44 AM Fri Jan 31 O Better endurance Limb end points travel less D Question 2 Take Quiz 1 pt: Two springs are arranged in series, and the whole arrangement is pulled a vertical distance of 2 cm. If the force in Spring A is 10 N, what is the force in Spring B as a result of the displacement? 05N 5 N 0.2 N 10 N O2N Question 3 1 ptsarrow_forwardNo chatgpt pls will upvote Already got wrong chatgptarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- I need correct answer not chatgptarrow_forwardWhat is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning