Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 9P
To determine
To find:
a) The magnitude of induced magnetic field at radial distance.
b) The magnitude of induced magnetic field at radial distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electric current is flowing through a long cylindrical conductor with radius a = 0.15 m. The current density J = 2.5 A/m2 is uniform in the cylinder. In this problem, we consider an imaginary cylinder with radius r around the axis AB.
Part (e) When r is greater than a, express the current inside the imaginary cylinder in terms of r, a, and J.
Part (f) Express the magnitude of the magnetic field, B, at r > a in terms of I and r.
Part (g) Express B in terms of J, a and r.
Part (h) For r = 2 a, calculate the numerical value of B in Tesla.
I already did the first few parts. I am most confused on parts e and g, how to derive the equations. Thanks so much!
Nonuniform displacement-current density. The figure
shows a circular region of radius R = 5.0 cm in which
a displacement current is directed out of the page.
The magnitude of the density of this displacement
current is given by Jd = (9 A/m²)(1 - r/R), where r is
the radial distance (r ≤ R). What is the magnitude of
the magnetic field due to the displacement current at
(a) r = 2.5 cm and
(b) r =
= 6.5 cm?
(a) B =
i
(b) B=
T
R
A cylindrical region of radius R=3 cm contains a uniform
magnetic field parallel to its axis. If the electric field induced at a
point 1=6 cm from the cylinder axis is 4.5×10³ V/m, the
magnitude of magnetic field must be changing (in T/s) at the rate:
R
r
E
X X
X X
x xB
E
Chapter 32 Solutions
Fundamentals of Physics Extended
Ch. 32 - Figure 32-19a shows a capacitor, with circular...Ch. 32 - Prob. 2QCh. 32 - Prob. 3QCh. 32 - Figure 32-22a shows a pair of opposite spin...Ch. 32 - An electron in an external magnetic field Bext has...Ch. 32 - Prob. 6QCh. 32 - Figure 32-23 shows a face-on view of one of the...Ch. 32 - Prob. 8QCh. 32 - Replace the current loops of Question 8 and Fig....Ch. 32 - Prob. 10Q
Ch. 32 - Figure 32-25 represents three rectangular samples...Ch. 32 - Prob. 12QCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - GO Nonuniform electric flux. Figure 32-30 shows a...Ch. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - The magnitude of the electric field between the...Ch. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - GO Figure 32-35a shows the current i that is...Ch. 32 - Prob. 29PCh. 32 - Assume the average value of the vertical component...Ch. 32 - In New Hampshire the average horizontal component...Ch. 32 - Figure 32-37a is a one-axis graph along which two...Ch. 32 - SSM WWWIf an electron in an atom has an orbital...Ch. 32 - Prob. 34PCh. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Assume that an electron of mass m and charge...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Figure 32-39 gives the magnetization curve for a...Ch. 32 - Prob. 45PCh. 32 - You place a magnetic compass on a horizontal...Ch. 32 - SSM ILW WWW The magnitude of the magnetic dipole...Ch. 32 - The magnitude of the dipole moment associated with...Ch. 32 - SSMThe exchange coupling mentioned in Module 32-8...Ch. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Using the approximations given in Problem 61, find...Ch. 32 - Earth has a magnetic dipole moment of 8.0 1022...Ch. 32 - A charge q is distributed uniformly around a thin...Ch. 32 - A magnetic compass has its needle, of mass 0.050...Ch. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - SSMThe magnetic field of Earth can be approximated...Ch. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - A sample of the paramagnetic salt to which the...Ch. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - In Fig. 32-42, a parallel-plate capacitor is being...Ch. 32 - What is the measured component of the orbital...Ch. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - SSM If an electron in an atom has orbital angular...Ch. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - What are the measured components of the orbital...
Knowledge Booster
Similar questions
- Problem 2: An electric current I = 0.55 A is traveling in a circular wire with radius R = 0.055 m. ds Part (a) Express the magnetic field vector B generated at the center O in terms of the current I, the radius vector R, and the length element vector ds. SchematicChoice : Rx ds ds x R В 4 ds x R 4T B = - %3D = - R3 R3 HọI R3 R3 ds x R B HọI Rx ds B= - В - ds x R R3 R3 Part (b) What's the direction of the magnetic field at point 0? MultipleChoice : 1) Upward. 2) Out of the screen. 3) To the left. 4) To the right. 5) Downward. 6) Into the screen. Part (c) Express the magnitude of the magnetic field at point O in terms of I and R. Expression : |B| = Select from the variables below to write your expression. Note that all variables may not be required. a, B, µo, T, 0, a, b, c, d, e, g, h, I, j, k, m, P, R, S, t Part (d) Calculate the numerical value of B, in tesla. Numeric : A numeric value is expected and not an expression. |B| =arrow_forwardPhysics In the figure a uniform electric field is directed out of the page within a circular region of radius R = 4.00 cm. The magnitude of the electric field is given by E = (3.50 × 10-3 V/m•s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)3.00 cm and (b)5.50 cm?arrow_forwardIn a certain circular region of radius 8.50 cm, the electric field is directed into the page, has a uniform magnitude, and is decreasing at a rate of 38.0 V/m · s. The electric field everywhere outside this circular region is zero. Determine the magnitude and direction (use the direction rosette for this) of the magnetic field at the location A which is at a radial distance d = 11.5 cm.arrow_forward
- circular region of radius R = 3.00 cm in which a displacement current is directed out of the page. The displacement current has a uniform density of magnitude Jd = 6.00 A/m2.What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm?arrow_forwardProblem 1: A time-dependent but otherwise uniform magnetic field of magnitude Bo(t) is confined in a cylindrical region of radius 6.5 cm. Initially the magnetic field in the region is pointed out of the page and has a magnitude of 1.5 T, but it is decreasing at a rate of 28.5 G/s. Due to the changing magnetic field, an electric field will be induced in this space which causes the acceleration of charges in the region Part (a) What is the direction of the acceleration of a proton placed at the point P, 2.5 cm from the center? Counterclockwise V Correct! Part (b) What is the magnitude of this acceleration, in meters per square second?arrow_forward*.4 Go Two wires, parallel to a z axis and a distance 4r apart, carry equal currents i in oppo- Wire 17 Wire 2 7 site directions, as shown in -x Fig. 32-28. A circular cylinder of radius r and length L has its axis on the z axis, midway be- tween the wires. Use Gauss' law -2r 2r Figure 32-28 Problem 4. for magnetism to derive an ex- pression for the net outward magnetic flux through the half of the cylindrical surface above the x axis. (Hint: Find the flux through the portion of the xz plane that lies within the cylinder.)arrow_forward
- A 3-D magnetic field vector with components of Bx = 3.34 mT; By = -10.3 mT; Bz = 4.13 mT such that the full vector in unit vector notation is written as .B=Bx i + By j + Bz k What is the magnitude of this vector in units of Tesla (the unit of magnetic field in SI units)?arrow_forwardUniform displacement-current density. The figure shows a circular region of radius R = 2.60 cm in which a displacement current is directed out of the page.The displacement current has a uniform density of magnitude J = 4.30 A/m². What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 1.10 cm and (b) 5.50 cm? (a) Number i (b) Number i R Units nT Units nTarrow_forwardThe figure shows a circular region of radius R = 2.50 cm in which a uniform electric flux is directed out of the plane of the page. The total electric flux through the region is given by ΦE = (2.00 mV·m/s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)1.50 cm and (b)6.00 cm?arrow_forward
- a circular region of radius R = 3.00 cm in which a uniform displacement current id = 0.500 A is out of the page.What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm?arrow_forwardAsaparrow_forwardIn Fig. 4, a long circular pipe with outside radius R = 2.6 cm carries a (uniformly distributed) current i = 8.00 mA into the page. A wire runs parallel to the pipe at a distance of 3R from center to center. Find the (a) magnitude and (b) direction (into or out of the page) of the current in the wire such that the net magnetic field at point P has the same magnitude as the net magnetic field at the center of the pipe but is in the opposite direction. Wire O- P.- х X. Pipe Fig. 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning