Differential Equations with Boundary-Value Problems
Differential Equations with Boundary-Value Problems
9th Edition
ISBN: 9781337632515
Author: Dennis G. Zill
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3.2, Problem 12E

Leaking cylindrical tank—continued When friction and contraction of the water at the hole are taken into account, the model in Problem 11 becomes

d h d t = c A h A w 2 g h ,

where 0 < c < 1. How long will it take the tank in Problem 11(b) to empty if c = 0.6? See Problem 13 in Exercises 1.3.

11. Leaking cylindrical tank A tank in the form of a right-circular cylinder standing on end is leaking water through a circular hole in its bottom. As we saw in (10) of Section 1.3, when friction and contraction of water at the hole are ignored, the height h of water in the tank is described by

d h d t = A h A w 2 g h ,

where Aw and Ah are the cross-sectional areas of the water and the hole, respectively.

(b) Suppose the tank is 10 feet high and has radius 2 feet and the circular hole has radius 1 2 inch. If the tank is initially full, how long will it take to empty?

Blurred answer
Students have asked these similar questions
Determine if the set of vectors is linearly independent or linearly dependent. linearly independent O linearly dependent Save Answer Q2.2 1 Point Determine if the set of vectors spans R³. they span R³ they do not span R³ Save Answer 23 Q2.3 1 Point Determine if the set of vectors is linearly independent or linearly dependent. linearly independent O linearly dependent Save Answer 1111 1110 Q2.4 1 Point Determine if the set of vectors spans R4. O they span R4 they do not span IR4 1000; 111O'
The everything combined problem Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable can be used to directly connect a workstation to a server. For each server, only one direct connection to that server can be active at any time. 1. How many cables would you need to connect each station to each server? 2. How many stations can be used at one time? 3. How many stations can not be used at any one time? 4. How many ways are there to pick 10 stations out of 15? 5. (This one is tricky) We want to guarantee that at any time any set of 10 or fewer workstations can simultaneously access different servers via direct connections. What is the minimum number of direct connections needed to achieve this goal?
Can you help me with D and E

Chapter 3 Solutions

Differential Equations with Boundary-Value Problems

Ch. 3.1 - Carbon Dating Archaeologists used pieces of burned...Ch. 3.1 - The Shroud of Turin, which shows the negative...Ch. 3.1 - Newtons Law of Cooling/Warming A thermometer is...Ch. 3.1 - A thermometer is taken from an inside room to the...Ch. 3.1 - A small metal bar, whose initial temperature was...Ch. 3.1 - Two large containers A and B of the same size are...Ch. 3.1 - A thermometer reading 70 F is placed in an oven...Ch. 3.1 - At t = 0 a sealed test tube containing a chemical...Ch. 3.1 - A dead body was found within a closed room of a...Ch. 3.1 - The rate at which a body cools also depends on its...Ch. 3.1 - A tank contains 200 liters of fluid in which 30...Ch. 3.1 - Solve Problem 21 assuming that pure water is...Ch. 3.1 - A large tank is filled to capacity with 500...Ch. 3.1 - In Problem 23, what is the concentration c(t) of...Ch. 3.1 - Solve Problem 23 under the assumption that the...Ch. 3.1 - Determine the amount of salt in the tank at time t...Ch. 3.1 - A large tank is partially filled with 100 gallons...Ch. 3.1 - In Example 5 the size of the tank containing the...Ch. 3.1 - A 30-volt electromotive force is applied to an...Ch. 3.1 - Solve equation (7) under the assumption that E(t)...Ch. 3.1 - A 100-volt electromotive force is applied to an...Ch. 3.1 - A 200-volt electromotive force is applied to an...Ch. 3.1 - An electromotive force E(t)={120,0t200,t20 is...Ch. 3.1 - An LR-series circuit has a variable inductor with...Ch. 3.1 - Air Resistance In (14) of Section 1.3 we saw that...Ch. 3.1 - How High?No Air Resistance Suppose a small...Ch. 3.1 - How High?Linear Air Resistance Repeat Problem 36,...Ch. 3.1 - Skydiving A skydiver weighs 125 pounds, and her...Ch. 3.1 - Prob. 39ECh. 3.1 - Rocket MotionContinued In Problem 39 suppose of...Ch. 3.1 - Evaporating Raindrop As a raindrop falls, it...Ch. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Constant-Harvest model A model that describes the...Ch. 3.1 - Drug Dissemination A mathematical model for the...Ch. 3.1 - Prob. 46ECh. 3.1 - Heart Pacemaker A heart pacemaker, shown in Figure...Ch. 3.1 - Sliding Box (a) A box of mass m slides down an...Ch. 3.1 - Sliding BoxContinued (a) In Problem 48 let s(t) be...Ch. 3.1 - Prob. 50ECh. 3.2 - The number N(t) of supermarkets throughout the...Ch. 3.2 - The number N(t) of people in a community who are...Ch. 3.2 - Prob. 3ECh. 3.2 - (a) Census data for the United States between 1790...Ch. 3.2 - (a) If a constant number h of fish are harvested...Ch. 3.2 - Investigate the harvesting model in Problem 5 both...Ch. 3.2 - Repeat Problem 6 in the case a = 5, b = 1, h = 7.Ch. 3.2 - Prob. 8ECh. 3.2 - Two chemicals A and B are combined to form a...Ch. 3.2 - Solve Problem 9 if 100 grams of chemical A is...Ch. 3.2 - Leaking cylindrical tank A tank in the form of a...Ch. 3.2 - Leaking cylindrical tankcontinued When friction...Ch. 3.2 - Leaking Conical Tank A tank in the form of a...Ch. 3.2 - Inverted Conical Tank Suppose that the conical...Ch. 3.2 - Air Resistance A differential equation for the...Ch. 3.2 - How High?Nonlinear Air Resistance Consider the...Ch. 3.2 - Prob. 17ECh. 3.2 - Prob. 18ECh. 3.2 - Prob. 19ECh. 3.2 - Evaporation An outdoor decorative pond in the...Ch. 3.2 - Doomsday equation Consider the differential...Ch. 3.2 - Doomsday or extinction Suppose the population...Ch. 3.2 - Prob. 26ECh. 3.2 - Prob. 27ECh. 3.2 - Prob. 28ECh. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - Prob. 35ECh. 3.3 - We have not discussed methods by which systems of...Ch. 3.3 - Prob. 2ECh. 3.3 - Prob. 3ECh. 3.3 - Construct a mathematical model for a radioactive...Ch. 3.3 - Prob. 5ECh. 3.3 - Prob. 6ECh. 3.3 - Consider two tanks A and B, with liquid being...Ch. 3.3 - Use the information given in Figure 3.3.6 to...Ch. 3.3 - Two very large tanks A and B are each partially...Ch. 3.3 - Prob. 10ECh. 3.3 - Consider the Lotka-Volterra predator-prey model...Ch. 3.3 - Prob. 14ECh. 3.3 - Determine a system of first-order differential...Ch. 3.3 - Prob. 16ECh. 3.3 - Prob. 17ECh. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Mixtures Solely on the basis of the physical...Ch. 3.3 - Prob. 22ECh. 3 - Answer Problems 1 and 2 without referring back to...Ch. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - tzi the Iceman In September of 1991 two German...Ch. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - According to Stefans law of radiation the absolute...Ch. 3 - Prob. 11RECh. 3 - A classical problem in the calculus of variations...Ch. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RE
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY