EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 82GP
(a)
To determine
To validate: The radii of the allowed orbits have the value
(b)
To determine
The speed of the particle in each allowed orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the angular momentum of the electron is quantized:
rmv = nh/2t
Who proved this hypothesis?
In a normal Zeeman Effect experiment, spectral splitting of the line at the wavelength
643.8 nm corresponding to the transition 5'D, → 5'P, of cadmium atoms is to be
observed. The spectrometer has a resolution of 0.01 nm. Minimum magnetic field needed
to observe this is (m. = 9.1x10-' kg,e =1.6x-19 C,c = 3×10° m/s)
-31
(а) 0.26T
(b) 0.527
(c) 2.6T
(d) 5.27
If the wavelength is 237nm, what is
the work function (W) of copper in
eV?
Chapter 31 Solutions
EBK PHYSICS
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardA physicist is watching a 15-kg orangutan at a zoo swing lazily in a tire at the end of a rope. He (the physicist) notices that each oscillation takes 3.00 s and hypothesizes that the energy is quantized. (a) What is the difference in energy in joules between allowed oscillator states? (b) What is the value of n for a state where the energy is 5.00 J? (c) Can the quantization be observed?arrow_forwardDo the Balmer series and the Lyman series overlap? Why? Why not? (Hint: calculate the shortest Balmer line and the longest Lyman line.)arrow_forward
- (a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers (n,l,ml,ms), prove that the maximum number of electrons in a subshell is 2n2. (b) In a similar manner, prove that the maximum number of electrons in a shell is 2n2.arrow_forwardEstimate the wavelength of the electrons in a 300 kV electron microscope.arrow_forwarda) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forward
- Suppose that the uncertainty in position of an electron is equal to the radius of the n=1n=1 Bohr orbit, about 0.529×10−10m0.529×10−10m. A) Calculate the minimum uncertainty in the corresponding momentum component. Express your answer in kilogram meters per second. B) Compare this with the magnitude of the momentum of the electron in the n=1n=1 Bohr orbit. Compare this with the magnitude of the momentum of the electron in the Bohr orbit. a) This is greater than the magnitude of the momentum of the electron in the n=1n=1 Bohr orbit. b) This is the same as the magnitude of the momentum of the electron in the n=1n=1 Bohr orbit. c) This is less than the magnitude of the momentum of the electron in the n=1n=1 Bohr orbit.arrow_forwardView Policies Current Attempt in Progress Suppose that the electron in the figure, having a total energy E of 4.9 eV, approaches a barrier of height Up = 6.9 eV and thickness L = 700 pm. What percentage change in the transmission coefficient T occurs for a 0.5% change in (a) the barrier height, (b) the barrier thickness, and (c) the kinetic energy of the incident electron? Energy E Elcciron L. (a) Number i Units (b) Number i Units (c) Number i Units MacBook Proarrow_forwardConsider the atomic spectra for the H-atom: the Lyman series emits UV photons, the Balmer series emits visible photons, the Paschen series emits IR photons, and the Brackett series emits far IR photons. What type of photons would you expect from the next series? Briefly explain.arrow_forward
- A photon is emitted when an electron in a three- dimensional cubical box of side length 8.00 * 10-11 m makes a transition from the nX = 2, nY = 2, nZ = 1 state to the nX = 1, nY = 1, nZ = 1 state. What is the wavelength of this photon?arrow_forward11arrow_forwardIn an experiment similar to that of Franck and Hertz, deuterium (a proton and a neutron in the nucleus) is bombarded with a beam of electrons and excitation potentials of 10.2V and 12.1V are obtained. a) Explain the observation of three different spectral lines of emission that accompany these excitations. Suggestion: Draw an energy level diagram. b) Determine the wavelengths of the observed spectral lines.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning