EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 28PCE
(a)
To determine
The shortest wavelength of the Lyman series for
Be 3 +
.
(b)
To determine
The ionization energy required to remove the final electron in
Be 3 +
.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change in energy level, either beginning at the n = 1 level (in the case of an absorption line) or ending there (an emission line).
The inverse wavelengths for the Lyman series in hydrogen are given by
1 -
where n = 2, 3, 4, ... and the Rydberg constant R, = 1.097 x 10' m-. (Round your answers to at least one decimal place. Enter your answers in nm.)
%3D
(a) Compute the wavelength for the first line in this series (the line corresponding to n = 2).
nm
(b) Compute the wavelength for the second line in this series (the line corresponding to n = 3).
nm
(c) Compute the wavelength for the third line in this series (the line corresponding to n = 4).
nm
(d) In which part of the electromagnetic spectrum do these three lines reside?
O x-ray region
O ultraviolet region
O infrared region
O gamma ray region
O visible light region
What is the wavelength of the hydrogen Balmer Series photon for m=4 and n=2 using the Rydberg forumla?
Show that the longest wavelength of the Balmer series
and the longest two wavelengths of the Lyman series sat-
isfy the Ritz combination principle. For the Lyman series,
limit = 91.13 nm.
Chapter 31 Solutions
EBK PHYSICS
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If an atom has an election in the n = 5 state with m = 3, what are the possible values of l?arrow_forwardDerive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers Z1 and Z2.arrow_forwardDo the Balmer series and the Lyman series overlap? Why? Why not? (Hint: calculate the shortest Balmer line and the longest Lyman line.)arrow_forward
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardThe x-ray spectrum is for 35.0 keV electrons striking a molybdenum (Z= 42) target. If you substitute a silver (Z = 47) target for the molybdenum target, will (a) lmin, (b) the wavelength for the Ka line, and (c) the wavelength for the Kb line increase, decrease, or remain unchanged?arrow_forwardThe visible lines of the Balmer series were observed first because they are most easily seen. Show that the wavelengths of spectral lines in the Lyman (n = 1) and Paschen (n = 3) series are not in the visible region. Find the wavelengths of the four visible atomic hydrogen lines. Assume the visible wavelength region is λ = 400– 700 nm.arrow_forward
- (a) A hydrogen atom has its electron in the n = 2 level. The radius of the electron's orbit in the Bohr model is 0.212 nm. Find the de Broglie wavelength of the electron under these circumstances. (b) What is the momentum, mv, of the electron in its orbit? kg-m/sarrow_forward3:09 O O O 63° A X • N N O 5G „ll Quizzes a (absorption) Brackett series Paschen series Lyman series (emission) Balmer series Paschen series (emission) n= 2 n=3 n=4 .... Lyman series n-5 (a) (b) e These pictures refer to the energy levels of a hydrogen atom. You can find the error in both parts, (a) and (b). The arrows labeled "emission" in (a), and all the arrows in (b), indicate a transition in which an electron jumps from a higher- energy state to a lower-energy state. The different "series" of emission lines are characterized by the index n of the low- energy state in which the electron ends up. In particular, the Lyman series consists of all transitions that end up in the n=1 energy level, with an initial energy level that corresponds to the label n = 2, 3, 4, 5, etc. One of these values of n is not shown as an arrow in the Lyman emission series in figures (a) or (b). This is a significant error because that particular spectral line is very important in astronomy. Pick the value…arrow_forwardThe wavelengths of the Lyman series for hydrogen are given by = RH(1-2), = 2, 3, 4, ... 1/2 (a) Calculate the wavelengths of the first three lines in this series. nm nm nm (b) Identify the region of the electromagnetic spectrum in which these lines appear. O ultraviolet region O infrared region O x-ray region O visible light region O gamma ray regionarrow_forward
- Consider a gas discharge tube (like the one used to discover cathode rays) where low-density hydrogen gas is enclosed. We recall that atoms are excited from the ground state. What minimum voltage should be applied to the electrodes in order to produce the a) The 1st four long wavelengths observed in the Balmer series. b) Which one(s) of the assumptions of Bohr describes best this problem?arrow_forwardThe wavelengths of the Lyman series for hydrogen are given by 1 λ = RH 1 − 1 n2 ,n = 2, 3, 4, . . . (a) Calculate the wavelengths of the first three lines in this series. nm nm nm (b) Identify the region of the electromagnetic spectrum in which these lines appear. infrared regionvisible light region x-ray regionultraviolet regiongamma ray regionarrow_forwardplease help as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning