
To sketch: The parabolas

Explanation of Solution
Derivative rules:
(1) Power Rule:
(2) Constant multiple rule:
(3)
(4)
Result used:
The equation of the tangent line at
where, m is the slope of the tangent line at
Graph:
The graph of two parabolas
From Figure 1, it is observed that there may be a line that is tangent to both the parabolas.
It is required to find the equation of the tangent line to the parabolas.
Calculation:
Consider the parabolas
Choose the point P
Suppose the slope of the required tangent line passes through the points P
The derivative of parabola
Apply the power rule (1) and simplify the terms,
Thus, the derivative of
Therefore, the slope of the tangent to
The derivative of parabola
Apply the derivative rules (1), (2), (3) and (4),
Thus, the derivative of
Therefore, the slope of the tangent to
Since the required equation of the tangent is linear from
From equations (2) and (3),
From equations (3) and (4),
Substitute
Add 2 on both sides and obtain the value of b.
Substitute the value
For
Substitute
Therefore, the equation of the tangent line to the parabolas is
Chapter 3 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Consider the following system of equations, Ax=b : x+2y+3z - w = 2 2x4z2w = 3 -x+6y+17z7w = 0 -9x-2y+13z7w = -14 a. Find the solution to the system. Write it as a parametric equation. You can use a computer to do the row reduction. b. What is a geometric description of the solution? Explain how you know. c. Write the solution in vector form? d. What is the solution to the homogeneous system, Ax=0?arrow_forward2. Find a matrix A with the following qualities a. A is 3 x 3. b. The matrix A is not lower triangular and is not upper triangular. c. At least one value in each row is not a 1, 2,-1, -2, or 0 d. A is invertible.arrow_forwardFind the exact area inside r=2sin(2\theta ) and outside r=\sqrt(3)arrow_forward
- A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.arrow_forwardExplain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)arrow_forwarduse Integration by Parts to derive 12.6.1arrow_forward
- Explain the relationship between 12.3.6, (case A of 12.3.6) and 12.3.7arrow_forwardExplain the key points and reasons for the establishment of 12.3.2(integral Test)arrow_forwardUse 12.4.2 to determine whether the infinite series on the right side of equation 12.6.5, 12.6.6 and 12.6.7 converges for every real number x.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





