Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 49P
To determine
The number of neutrinos passes through mother’s body.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The energy flux carried by neutrinos from the Sun is estimated to be on the order of 0.400 W/m2 at the Earth's surface. Estimate the fractional mass loss of the Sun over 1.0 109 yr due to the emission of neutrinos. The mass of the Sun is 1.989 1030 kg. The Earth–Sun distance is 1.496 1011 m.
m
msun
=
The energy flux carried by neutrinos from the Sun is estimated to be on the order of 0.400 W/m2 at the Earth’s surface. Estimate the fractional mass loss of the Sun over 109 yr due to the emission of neutrinos. The mass of the Sun is 1.989 × 1030 kg. The Earth–Sun distance is equal to 1.496 × 1011 m.
Twelve electron antineutrinos from Supernova 1987A were detected by the Kamiokande neutrino detector in Japan. This experiment consisted of a tank filled with 3 kton of water, and surrounded by photomultiplier tubes. The photomultipliers detect the Cerenkov radiation emitted by a recoiling positron that is emitted after a proton absorbs an antineutrino from the supernova.
Estimate how many people on Earth could have perceived a flash of light, due to the Cerenkov radiation produced by the same process, when an antineutrino from the supernova traveled through their eyeball. Assume that eyeballs are composed primarily of water, each weighs about 10 g, and that the Earth’s population was 5 billion in 1987.
Chapter 31 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 31.2 - Given the identification of the particles in...Ch. 31.5 - Prob. 31.2QQCh. 31.5 - Prob. 31.3QQCh. 31.5 - Prob. 31.4QQCh. 31.9 - Prob. 31.5QQCh. 31 - Prob. 1OQCh. 31 - Prob. 2OQCh. 31 - Prob. 3OQCh. 31 - Prob. 4OQCh. 31 - Prob. 5OQ
Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 11CQCh. 31 - Prob. 12CQCh. 31 - Prob. 13CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10PCh. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The power output of the Sun is 41026W. (a) If 90% of this is supplied by the protonproton cycle, how many protons are consumed per second? (b) How many neutrinos per second should there be per square meter at the Earth from this process? This huge number is indicative of how rarely a neutrino interacts, since large detectors observe very few per day.arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forward
- Calculate the energy Er, in megaelectronvolts (MeV), released in the following nuclear fission reaction: Cm(250) + n → Se(92) + Sm(153) + 6n The atomic masses are Cm(250)=250.078357 u, Se(92)=91.949926 u, and Sm(153)=152.922097 u. Er = ? MeVarrow_forwardIf the mass of the electron neutrino is 2.2 eV/c2, what is the lowest temperature at which it could be formed from thermal interactions? What if its mass is 10-4 eV?arrow_forwardProvide the answers in 90 minutes and count as 2 questions if necessary.arrow_forward
- Pls solve in detail.arrow_forwardA π meson (rest mass 135MeV/c2) moving through the laboratory at a speed of 0.998c decays into two gamma-ray photons. The two photons have equal energies Eγ and move at equal angles ? on opposite sides of the direction of motion of the original π meson. Calculate Eγ and θ.arrow_forwardIf the mass of the electron neutrino is 2.2 eV/c 2, what is the lowest temperature at which it could be formed from thermal interactions?arrow_forward
- Calculate the sum of the kinetic energies, in MeV, shared among the three outgoing alpha particles. The initial state is a proton and a boron-11 nucleus at rest, and the final state is three alpha particles with rest energy plus some total kinetic energy shared among the three alpha particles. The proton mass m=1.6726219E-27 kg, the boron-11 mass is 1.82814E-26 kg, and the mass of an alpha particle is 6.64648E-27kg. What is the kinetic energy of the 3 alpha particles in MeV? I found that the proton’s initial kinetic energy is 2.5 MeV.arrow_forwardAn α particle, 4He2+, has a mass of 4.00151 amu. Determine the value of its charge-to-mass ratio in C/kg . (The electron has a charge of −1.60218×10^−19 C , 1mol=6.0221421×10^23particles .)arrow_forwardThe half-lives of 235U and 238U are 7.04 × 108 years and 4.47 × 109 years, respectively, and the present abundance ratio is 238U>235U 5 137.7. It is thought that their abundance ratio was 1 at some time before our earth and solar system were formed about 4.5 × 109 years ago. Estimate how long ago the supernova occurred that supposedly produced all the uranium isotopes in equal abundance, including the two longest lived isotopes, 238U and 235U.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning