(a)
The number of electrons and the number of each species of quark in 1L water.
(a)
Answer to Problem 32P
The number of electrons is
The numbers of each species of quark in 1L water are
Explanation of Solution
Write the expression for the number of protons.
Here,
Write the expression for the number of neutrons.
Here,
Write the quark configuration of proton.
Write the quark configuration of neutron.
Write the expression for the number of up quark.
Here,
Write the expression for the number of up quark.
Here,
Conclusion:
To get neutral atom, the number proton and electron will be same.
Substitute,
Thus, the number of electrons is
Substitute,
Substitute,
Substitute,
Thus, the numbers of each species of quark in 1L water are
(b)
The number of electrons and the number of each species of quark in body water.
(b)
Answer to Problem 32P
The number of electrons is
The numbers of each species of quark in body water are
Explanation of Solution
In human body total amount of water is 65kg.
Write the expression for the number of electron in human body.
Here,
Write the expression for the number of up quark in human body.
Here,
Write the quark configuration of down quark in human body.
Here,
Conclusion:
Substitute,
Thus, the number of electrons is
Substitute,
Substitute,
Thus, the numbers of each species of quark in body water are
Want to see more full solutions like this?
Chapter 31 Solutions
Principles of Physics: A Calculus-Based Text
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College