Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 2OQ
To determine
The comparison between average density of the solar system with the critical density required for the Universe to stop its Hubble’s law expansion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.
You observe a star orbiting in the outer parts of a galaxy. The distance to this galaxy is known, and you are able to take a spectra of this star and determine its velocity. The star is 19 kpc from the galaxy center and moving in a circular orbit with speed 369 km/s. Compute the total mass of the galaxy internal to the star's orbit. You will get a large number; express it in scientific notation and in units of solar masses [e.g., 4.2e10].
[Hint: there is a Box in Chapter 22 of your textbook that will be of help. See also the course formula sheet.]
Pretend that galaxies are spaced evenly, 7.0 Mpc apart, and the average mass of a galaxy is 1.0 ✕ 1011 M. What is the average density (in kg/m3) of matter in the universe? (Note: The volume of a sphere is 4/3pieR^3 and the mass of the sun is 2.0 ✕ 1030 kg.)
______ kg/m^3
Which model universe does this density value support?
A: open
B: flat
C: closed
Chapter 31 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 31.2 - Given the identification of the particles in...Ch. 31.5 - Prob. 31.2QQCh. 31.5 - Prob. 31.3QQCh. 31.5 - Prob. 31.4QQCh. 31.9 - Prob. 31.5QQCh. 31 - Prob. 1OQCh. 31 - Prob. 2OQCh. 31 - Prob. 3OQCh. 31 - Prob. 4OQCh. 31 - Prob. 5OQ
Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 11CQCh. 31 - Prob. 12CQCh. 31 - Prob. 13CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10PCh. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The nearest neutron star (a collated star made primarily of neutrons) is about 3.00 1018 m away from Earth. Given that the Milky Way galaxy (Fig. P1.81) is roughly a disk of diameter 1021 m and thickness 1019 m, estimate the number of neutron stars in the Milky Way to the nearest order of magnitude. Figure P1.81arrow_forwardA star is 1.0 x 104 ly (light-years) from the center of its galaxy and is moving in a circle around that center at a speed of 110 km/s. (a) How long does it take the star to make one revolution about the galactic center? (b) How many revolutions has the star completed since it was formed about 5.6 x 109 years ago?arrow_forwardSuppose we find an Earth-like planet around one of our nearest stellar neighbors, Alpha Centauri (located only 4.4 light-years away). If we launched a "generation ship" at a constant speed of 1500.00 km/s from Earth with a group of people whose descendants will explore and colonize this planet, how many years before the generation ship reached Alpha Centauri? (Note there are 9.46 ××1012 km in a light-year and 31.6 million seconds in a year.arrow_forward
- Distribution of Dark matter The most mass of our Milky Way is contained in an inner region close to the core with radius R0.Because the mass outside this inner region is almost constant, the density distribution can bewritten as following (assume a flat Milky Way with height z0):ρ(r) = (ρ0, r ≤ R00, r > R0(a) Derive an expression for the mass M(r) enclosed within the radius r.(b) Derive the expected rotational velocity of the Milky Way v(r) at a radius r.arrow_forwardA star, which is 2.1 x 1020 m from the center of a galaxy, revolves around that center once every 2.8 x 108 years. Assuming each star in the galaxy has a mass equal to the Sun's mass of 2.0 x 1030 kg, the stars are distributed uniformly in a sphere about the galactic center, and the star of interest is at the edge of that sphere, estimate the number of stars in the galaxy.arrow_forwardThe Large Magellanic Cloud is a small satellite galaxy that orbits the Milky Way. It is currently orbiting the Milky Way at a distance of about 160,000 light-years from the galactic center at a velocity of about 300 km/s. Use these values in the orbital velocity law to get an estimate of the Milky Wayʹs mass. (The value you obtain is a fairly rough estimate because the orbit of the Large Magellanic Cloud is elliptical, not circular.)arrow_forward
- Observations indicate that each galaxy contains a supermassive black hole at its center. These black holes can be hundreds of thousands to billions of times more massive than the Sun. Astronomers estimate the size of such black holes using multiple methods. One method, using the orbits of stars around the black hole, is an application of Kepler's third law. The mass of the black hole can be found by using the given equation, where a is the semi-major axis in astronomical units, P is the period in years, and k is a constant with a value of 1 Mo X year²/ AU³. a³ M = k- p² What is the mass of a supermassive black hole if a star orbits it with a semimajor axis of 959 AU and a period of 13.3 years? mass: Another method measures the speed of gas moving past the black hole. In the given equation, v is the velocity of the gas (in kilometers per second), r is the distance of the gas cloud from the black hole (in kilometers), and G is Newton's gravitational constant. In this equation, G = 1.33 ×…arrow_forwardn(r) = 1ge where r represents the distance from the centre of the Galaxy, Ro is the distance of the Sun from the centre of the Galaxy, Ra is the typical size of disk and no is the stellar density of disk at the position of the Sun. All distances are expressed in kpc. An astronomer observes the center of the Galaxy within a small field of view. We take a particular type of Red giant stars as the standard candles for the observation with approximately constant absolute magnitude of M = -0.2, (a) A telescope has a limiting magnitude of m = 18. Calculate the maximum distance to which this telescope can detect these red giant stars. For simplicity we ignore the presence of interstellar medium so there is no extinction. (b) Assume an extinction of 0.7 mag/kpc for the interstellar medium. Repeat the calculation as done in the part 5a and obtain a rough number for the maximum distance these red giant stars can be observed. (c) Give an expression for the number of these red giant stars per mag-…arrow_forwardWhat would be your estimate for the age of the universe if you measured Hubbleʹs constant to be 33 km/s/Mly? You can assume that the expansion rate has remained unchanged during the history of the universe.arrow_forward
- Supermassive black holes are thought to exist at the center of many galaxies. What is the radius of such an object if it has a mass of 109 Suns?arrow_forwardHow close, r, to the center of a neutron star would a manned satellite be orbiting if it were at the location where the gravitational force from the star equaled the gravitational force of the Earth's surface? RN = neutron star radius = 1 × 104 kmM N = neutron star mass = 3 × 1030 kgG = universal gravitational constant = 6.67 × 10-11 N m2 / kg2g⊕ = Earth gravitational acceleration = 9.807 m/s²arrow_forwardIn 1999, scientists discovered a new class of black holes with masses 100 to 10000 times the mass of our sun, but occupying less space than our moon. Suppose that one of these black holes has a mass of 1x10^3 suns and a radius equal to one-half the radius of our moon. What is the density of the black hole in g/cm^3? The radius of our sun is 7.0x10^5km and it has an average density of 1.4x10^3kg/m^3. The diameter of the moon is 2.16x10^3 miles. Note: the volume of a sphere is V=4/3 pie r^3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning