Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 31, Problem 36P
(a)
To determine
The magnitude and direction of force on coil as it enters in the magnetic field.
(b)
To determine
The magnitude and direction of force on coil as it moves within the magnetic field.
(c)
To determine
The magnitude and direction of total force on coil as it moves within the magnetic field.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 31 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 31.1 - A circular loop of wire is held in a uniform...Ch. 31.2 - QUICK QUIZ 30.2 In Figure 30.8a, a given applied...Ch. 31.3 - Figure 30.12 (Quick Quiz 30.3) QUICK QUIZ 30.3...Ch. 31.5 - Prob. 31.4QQCh. 31.6 - Prob. 31.5QQCh. 31 - Prob. 1OQCh. 31 - Prob. 2OQCh. 31 - Prob. 3OQCh. 31 - Prob. 4OQCh. 31 - Prob. 5OQ
Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 9OQCh. 31 - Prob. 10OQCh. 31 - Prob. 11OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Scientific work is currently under way to...Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - A coil formed by wrapping 50 turns of wire in the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - A small airplane with a wingspan of 14.0 m is...Ch. 31 - A 2.00-m length of wire is held in an eastwest...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - The rotating loop in an AC generator is a square...Ch. 31 - Prob. 50PCh. 31 - Prob. 51APCh. 31 - Prob. 52APCh. 31 - Prob. 53APCh. 31 - Prob. 54APCh. 31 - Prob. 55APCh. 31 - Prob. 56APCh. 31 - Prob. 57APCh. 31 - Prob. 58APCh. 31 - Prob. 59APCh. 31 - Prob. 60APCh. 31 - Prob. 61APCh. 31 - Prob. 62APCh. 31 - Prob. 63APCh. 31 - Prob. 64APCh. 31 - Prob. 65APCh. 31 - Prob. 66APCh. 31 - Prob. 67APCh. 31 - A conducting rod moves with a constant velocity in...Ch. 31 - Prob. 69APCh. 31 - Prob. 70APCh. 31 - Prob. 71APCh. 31 - Prob. 72APCh. 31 - Prob. 73APCh. 31 - Prob. 74APCh. 31 - Prob. 75APCh. 31 - Prob. 76APCh. 31 - Prob. 77APCh. 31 - Prob. 78APCh. 31 - Prob. 79CPCh. 31 - Prob. 80CPCh. 31 - Prob. 81CPCh. 31 - Prob. 82CPCh. 31 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wire is bent in the form of a square loop with sides of length L (Fig. P30.24). If a steady current I flows in the loop, determine the magnitude of the magnetic field at point P in the center of the square. FIGURE P30.24arrow_forwardA toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forwardFor both sketches in Figure P30.56, there is a 3.54-A current, a magnetic field strength B 0.650 T. and the angle is 32.0. Find the magnetic force per unit length (magnitude and direction) exerted on the current-carrying conductor in both cases.arrow_forward
- Two infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forwardA constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1. a. What is the magnetic flux through the loop? b. Is a current induced in the loop? Explain. FIGURE P32.1arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forward
- A rectangular coil consists of N = 100 closely wrapped turns and has dimensions a = 0.400 m and b = 0.300 m. The coil is hinged along the y axis, and its plane makes an angle = 30.0 with the x axis (Fig. P22.25). (a) What is the magnitude of the torque exerted on the coil by a uniform magnetic field B = 0.800 T directed in the positive x direction when the current is I = 1.20 A in the direction shown? (b) What is the expected direction of rotation of the coil? Figure P22.25arrow_forwardTwo frictionless conducting rails separated by l = 55.0 cm are connected through a 2.00- resistor, and the circuit is completed by a bar that is free to slide on the rails (Fig. P32.71). A uniform magnetic field of 5.00 T directed out of the page permeates the region, a. What is the magnitude of the force Fp that must be applied so that the bar moves with a constant speed of 1.25 m/s to the right? b. What is the rate at which energy is dissipated through the 2.00- resistor in the circuit?arrow_forwardA rectangular coil with resistance R has N turns, each of length and width as shown in Figure P31.36. The coil moves into a uniform magnetic field B with constant velocity v. What are the magnitude and direction of the total magnetic force on the coil (a) as it enters the magnetic field, (b) as it moves within the field, and (c) as it leaves the field?arrow_forward
- In Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forwardFigure P23.15 shows a top view of a bar that can slide on two frictionless rails. The resistor is R = 6.00 , and a 2.50-T magnetic field is directed perpendicularly downward, into the paper. Let = 1.20 m. (a) Calculate the applied force required to move the bar to the right at a constant speed of 2.00 m/s. (b) At what rate is energy delivered to the resistor? Figure P23.15 Problems 15 through 18.arrow_forwardReview. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails (Fig. P28.23) that are d = 12.0 cm apart and L = 45.0 cm long. The rod carries a current of I = 48.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.240 T is directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as it leaves the rails? Figure P28.23 Problems 23 and 24.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY