Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate tedious of the human brain (Figure P31.3). In TMS, a small coil is placed on the scalp and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can stimulate neuronal activity. (a) One such device generates an upward magnetic Held within the brain that rises from zero to 1.50 T in 120 ms. Determine the induced emf around a horizontal circle of tissue of radius 1.60 mm. (b) What If? The field next changes to 0.500 T downward in 80.0 ms. How does the emf induced in this process compare with that in part (a)? Figure P31.3 Problems 3 and 51. The magnetic coil of a Neurostar TMS apparatus is held near the head of a patient.
Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate tedious of the human brain (Figure P31.3). In TMS, a small coil is placed on the scalp and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can stimulate neuronal activity. (a) One such device generates an upward magnetic Held within the brain that rises from zero to 1.50 T in 120 ms. Determine the induced emf around a horizontal circle of tissue of radius 1.60 mm. (b) What If? The field next changes to 0.500 T downward in 80.0 ms. How does the emf induced in this process compare with that in part (a)? Figure P31.3 Problems 3 and 51. The magnetic coil of a Neurostar TMS apparatus is held near the head of a patient.
Solution Summary: The author determines the induced emf around a horizontal circle of tissue.
Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate tedious of the human brain (Figure P31.3). In TMS, a small coil is placed on the scalp and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can stimulate neuronal activity. (a) One such device generates an upward magnetic Held within the brain that rises from zero to 1.50 T in 120 ms. Determine the induced emf around a horizontal circle of tissue of radius 1.60 mm. (b) What If? The field next changes to 0.500 T downward in 80.0 ms. How does the emf induced in this process compare with that in part (a)?
Figure P31.3 Problems 3 and 51. The magnetic coil of a Neurostar TMS apparatus is held near the head of a patient.
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 31 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY