
Interpretation:
The stereochemistry of the following pericyclic reactions,
a) The thermal cyclization of a conjugated tetraene.
Concept introduction:
a) A pericyclic reaction is a concerted reaction that proceeds through a cyclic transition state. Pericyclic reactions are completely stereospecific; that is, a single stereoisomer of the reactant forms a single stereoisomer of the product. Various kind of stereochemistry occurs in pericyclic reaction.
Interpretation:
The stereochemistry of the following pericyclic reactions,
b) The photochemical cyclization of a conjugated tetraene.
Concept introduction:
b) When like phases of the p orbitals are on the same side of the molecule, the two orbitals must rotate in opposite directions—one clockwise and one counterclockwise. Rotation in opposite directions is said to be disrotatory.
Interpretation:
The stereochemistry of the following pericyclic reactions,
c) A photochemical [4 1 4] cycloaddition.
Concept introduction:
c) When like phases of the p orbitals are on opposite sides of the molecule, the two orbitals must rotate in the same direction—both clockwise or both counterclockwise. Rotation in the same direction is said to be conrotatory.
Interpretation:
The stereochemistry of the following pericyclic reactions,
d) A thermal [2 1 6] cycloaddition.
Concept introduction:
d) A suprafacial stereochemistry occurs when like phases of the p orbitals of both reactants are on the same side of the pie system, so that two bonding interactions result.
Interpretation:
The stereochemistry of the following pericyclic reactions,
e) A photochemical [3, 5] sigmatropic rearrangement.
Concept introduction:
e) An antarafacial stereochemistry occurs when one pie system must twist to align like phases of the p orbitals of the terminal carbons of the reactants.

Trending nowThis is a popular solution!

Chapter 30 Solutions
Organic Chemistry
- Add conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forwardIndicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forward
- Please help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward
- 3) Label the configuration in each of the following alkenes as E, Z, or N/A (for non-stereogenic centers). 00 E 000 N/A E Br N/A N/A (g) E N/A OH E (b) Oz N/A Br (d) 00 E Z N/A E (f) Oz N/A E (h) Z N/Aarrow_forward6) Fill in the missing Acid, pKa value, or conjugate base in the table below: Acid HCI Approximate pK, -7 Conjugate Base H-C: Hydronium (H₂O') -1.75 H-O-H Carboxylic Acids (RCOOH) Ammonium (NH4) 9.24 Water (H₂O) H-O-H Alcohols (ROH) RO-H Alkynes R--H Amines 25 25 38 HOarrow_forward5) Rank the following sets of compounds in order of decreasing acidity (most acidic to least acidic), and choose the justification(s) for each ranking. (a) OH V SH я вон CH most acidic (lowst pKa) least acidic (highest pKa) Effect(s) Effect(s) Effect(s) inductive effect O inductive effect O inductive effect electronegativity electronegativity O electronegativity resonance polarizability resonance polarizability O resonance O polarizability hybridization Ohybridization O hybridization оarrow_forward
