EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 84GP
To determine
The most appropriate metal suitable to construct photocell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You want to construct a photocell that works with a visible light. Three materials are readily available: aluminum (W0 = 4.28 eV), lead (W0 = 4.25 eV), and cesium (W0 = 2.14 eV). Which material(s) would be suitable?
A light source is used in a photoelectric experiment. The metal copper is illuminated,
if a stopping potential of 1.03 V is required, what is the energy of the light shining on
the metal in eV?
Answer to FIVE decimal places. Do NOT enter units.
Use and carry ALL your digits of your calculator.
Metal #Metal o (eV)
1
Ag
4.73
Al
4.08
Cu
4.70
4
Fe
4.50
Na
2.46
6.
Pb
4.14
Pt
6.35
Zn
4.31
our Answer:
b) Two light sources are used in a photoelectric experiment to determine the work function
for a particular metal surface. When green light from a mercury lamp (2 = 546.1 nm) is
used, a stopping potential of 0.376 V reduces the photocurrent to zero. Based on this
measurement,
%3D
i.
Calculate the work function for this metal.
ii.
If the yellow light from a helium discharge tube (2 = 587.5 nm) is used, find the
%3D
new stopping potential.
Chapter 30 Solutions
EBK PHYSICS
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A laser with a power output of 2.00 mW at a 400-nm wavelength is used to project a beam of light onto a calcium photoelectrode. (a) How many photoelectrons leave the calcium surface per second? (b) What power is carried away by ejected photoelectrons, given that the work function of calcium is 2.31 eV? (c) Calculate the photocurrent. (d) If the photoelectrode suddenly becomes electrically insulated and the setup of two electrodes in the circuit suddenly starts to act like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?arrow_forwardA 400-nm laser beam is projected onto a calcium electrode. The power of the laser beam is 2.00 mW and the work function of calcium is 2.31 eV. (a) How many photoelectrons per second are ejected? (b) What net power is carried away by photoelectrons?arrow_forwardK3arrow_forward
- Barium has a work function of 2.48 eV. 1. a) What is the maximum kinetic energy of electrons if the metal is illuminated by UV light of wavelength 365 nm? 2. b) What is their speed?arrow_forwardA physicist wishes to produce electrons by shining light on a metal surface. The light source emits light with a wavelength of 450 nm. The table lists the only available metals and their work functions. Wo (eV) Metal barium 2.5 lithium 2.3 tantalum 4.2 tungsten 4.5 Which metal(s) can be used to produce electrons by the photoelectric effect? A) barium only B) tungsten only C) tungsten or tantalum D) barium or lithium E) lithium, tantalum, or tungsten ОВОЕ ОС ОА ОDarrow_forwardYou have a sample of Sodium with a Work Function of 2.28 eV that you are shining light upon to demonstrate the Photoelectric Effect. Which type of light would be the lowest Energy that would still work? [If visible light, state the color.] How fast will an electron be ejected from the sample material if we use UV light of wavelength of 10.0 nm? m/sarrow_forward
- What is the energy of a photon that has the same wavelength as a 12-eV electron? (Ans. 3.5 keV)arrow_forwarda −2.5 eV b 0.1 eV c 1.8 eV d 5.0 eVarrow_forwardThe photoelectric work function of potassium is 2 eV. What potential difference would be applied between a potassium surface and the collector in order to just prevent the collection of electrons when the surface is illuminated by 350 nm? A. 154 V B. 15.4 V C. 0.154 V D. 1.54 Varrow_forward
- In a photoelectric effect experiment, it is found that no current flows unless the incident light has a wavelength shorter than 359 nm nm. What stopping potential will be needed to halt the current if light of 225 nm falls on the surface? Express your answer with the appropriate units. μA 2.249 V Vo =arrow_forwardThe photoelectric work function of potassium is 2 ev. What potential difference would be applied between a potassium surface and the electron in order to just prevent the collection of electrons when the surface is illuminated by 350 nm? A. 154 V B. 0.154 V C. 1.54 V D. 15.4 Varrow_forwardCurrent Time.03.31 1. A magnesium surface has a work function of 3.10 eV. Electromagnetic waves with a wavelength of 200 nm strike the surface and eject electrons. Find the maximum kinetic energy of the ejected electrons. Express your answer in electron volts. eV 16xet16arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning