EBK PHYSICS
EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 30, Problem 33PCE

(a)

To determine

The maximum kinetic energy of electron ejected from aluminum surface.

(b)

To determine

The range of frequency to provide no electrons.

Blurred answer
Students have asked these similar questions
When developing a night vision night vision equipment, you need to measure the work function for the surface of a metal, so you perform a photoelectric photoelectric effect experiment. You measure the cutoff potential V0 as a function of of the wavelength À of light striking the surface. The results appear in the following table. In your analysis, you use c = 2.998 X 10^8 m/s and e = 1.602 X 10^-19 C, which are values obtained in other experiments. (a) Select a way to represent your results graphicallyso that the data points are close to a straight line. Using this graph, find the slope and the intercept y of the straight line that best fits the data. (b) Use the results from (a) to calculate the Planck constant h (as a test of your data) and the work function ( in and V) of the surface. ( c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of wavelength of light is required to produce photoelectrons with a kinetic energy…
The most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) (10) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b)  What is the wavelength? 2. An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15° << 1°. The indices of refraction in free space and the atmosphere are n0 o 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near r ® 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations. (a)  When the ISS is directly…
In developing night-vision equipment, you need to measure the work function for a metal surface, so you perform a photoelectric-effect experiment. You measure the stopping potential V0 as a function of the wavelength l of the light that is incident on the surface. You get the results in the table.   In your analysis, you use c = 2.998 x 108m/s and e = 1.602 x 10-19 C, which are values obtained in other experiments. (a) Select a way to plot your results so that the data points fall close to a straight line. Using that plot, find the slope and y-intercept of the best-fit straight line to the data. (b) Use the results of part (a) to calculate Planck’s constant h (as a test of your data) and the work function (in eV) of the surface. (c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of light is required to produce photoelectrons with kinetic energy 10.0 eV?

Chapter 30 Solutions

EBK PHYSICS

Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON