EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 2CQ
To determine
The way in which the Plank’s hypothesis of energy quantization resolve the Ultraviolet Catastrophe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
lmagine an alternate universe where the mass of the electron is 2.4 times larger than in our universe.Assuming that none of the other properties of the universe are changed, what would be the wavelength of the first line (the line with the longest wavelength)in the Lyman series of the hydrogen atom? Give your answer in nm.
5. (a) By considering the case where an atom is enclosed within a cavity containing black body
radiation at temperature T, show that the Einstein A and B coefficients are related to each
other through the following relationships:
9,B12 = 92B21,
8nhv³
- B21,
A21
where g, and g, are the degeneracies of the two levels respectively. The spectral energy
density of black body radiation is given by
8thv³
u(v)
c exp(hv/kgT) –1
1
where kg is Boltzmann's constant.
(b) Explain why the effective temperature of the laser levels must be negative in order for a
laser to oscillate.
(c) The degeneracies of the upper and lower levels of the 488.0 nm line of the argon ion laser
are 6 and 4, respectively. Deduce the effective temperature of the laser levels when the
population of the upper level is twice that of the lower level.
(d) Describe how population inversion is achieved in a semiconductor laser diode.
(e) A certain semiconductor laser diode has a length of 0.5 mm and has a high reflection
coating…
(b) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp is directed on to a sample ofkrypton, electrons are ejected with a speed of 1.59 × 106 m s−1. Calculate the ionisation energy ofkrypton.
Chapter 30 Solutions
EBK PHYSICS
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. (a) Briefly explain the Compton effect. (b) It has been suggested that high energy photons might be found in cosmic radiation, as a result of the inverse Compton effect. If the proton has a momentum of 1010 eV/c, find the maximum final energy of the yellow photon initially emitted by a sodium atom (2 = 2.1 nm).arrow_forwardA) What is the approximate wavelength emitted from helium represented by the bright yellow emission line below? What is it's frequency in HZ and energy in eV? (1 eV= 1.6 x 10-19 joules). B) If the excited helium electron that emits a yellow photon in this line starts with a potential energy of 8 eV, what is the potential energy of the electron afterwards? Assume that the emission of a yellow photon is allowed by the laws of quantum mechanics. Also don't worry about the other electron.arrow_forwardGive proof that the violation of the Kelvin–Planck statement leads to the violation of the Clausius statement.arrow_forward
- In his classic 1940 book Mr. Tompkins in Wonderland, physicist George Gamow imagined a trip to a "quantum jungle" where the value of Planck's constant h was 1.0J-s instead of its real value of 6.63 × 10-34 J-s.Imagine that while exploring in this quantum jungle, you disturb a community of bats residing in a ruined temple. Imagine that a "beam" of identical bats (each with a mass of 0.5 kg) flies at 6 m/s through two temple doors 3 m apart and into a flat, large courtyard beyond. Where could you stand in the courtyard to avoid being struck by any bats?arrow_forwardI need the answer as soon as possiblearrow_forwardIn his classic 1940 book Mr. Tompkins in Wonderland, physicist George Gamow imagined a trip to a "quantum jungle" where the value of Planck's constant h was 1.0 J*s instead of its real value of 6.63 x 10-34 J*s. Imagine that while exploring in this quantum jungle, you disturb a community of bats residing in a ruined temple. Imagine that a "beam" of identical bats (each with a mass of 0.5 kilograms) flies at 6 meters per second through two temple doors 3 meters apart and into a flat, large courtyard beyond. If you are 30 meters from the doors, where could you stand in the courtyard to avoid being struck by any bats? (Hint: the answer is 1.6 meters, 4.9 meters, etc, to either side of the center line perpendicular to the doors)arrow_forward
- i need the answer quicklyarrow_forwardWhy are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions between outer shells?arrow_forwardSuppose an electron in a hydrogen atom makes a transition from the (n+1) th orbit to the nth orbit. Is the wavelength of the emitted photon longer for larger values of n, or for smaller values of n?arrow_forward
- How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun?arrow_forwardWhat is the longest wavelength of radiation that can eject a hotoelectron from potassium, given the work function of potassium 2.24 eV? Is it in the visible range?arrow_forwardShow that Stefan’s law results from Planck’s radiation law. Hin: To compute the total power of blackbody radiation emitted across the entire spectrum of wavelengths at a given temperature, integrate Planck’s law over the entire spectrum P(T)=0I(,T)d. Use the substitution x=hckT and the tabulated value of the integral 0dx x 3( e x 1)=415arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning